MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Гусев М. В., Минеева Л. А. - Микробиология

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
<<< НазадСодержаниеДальше >>>

Все исследованные риккетсий обладают определенной активностью энергетических и биосинтетических процессов. У них найдена цитохромная система и показано запасание энергии, освобождающейся в процессе дыхания, в виде АТФ. Риккетсии могут осуществлять некоторые биосинтетические процессы, например биосинтез белка и липидов.

Порядок Chlamydiales включает одно семейство Chlamydiacaaa и один род Chlamydia. Хламидии — облигатные внутриклеточные паразиты позвоночных и человека, характеризующиеся сложным циклом развития. Могут размножаться только в цитоплазме клеток. Вне клеток их культивировать пока не удается.

Облигатный внутриклеточный паразитизм хламидии наложил специфический отпечаток на их метаболизм. Прежде всего это коснулось их энергетического метаболизма. Обладая способностью осуществлять определенные реакции окислительного характера (например, при добавлении необходимых кофакторов окислять глюкозу, пировиноградную и глутаминовую кислоты), хламидии не могут синтезировать высокоэнергетические соединения, и в первую очередь АТФ, поэтому они получили название "энергетических паразитов". Хламидии паразитируют в организме различных позвоночных (птиц, человека и других млекопитающих), вызывают у человека ряд заболеваний, например трахому и воспаления дыхательных органов.

Группа 10. Микоплазмы. К ним относятся формы, у которых отсутствует клеточная стенка. Таксономическая значимость этого признака позволила все прокариоты, не имеющие клеточной стенки, выделить в группу, присвоив ей ранг отдела (см. табл. 13). В девятом издании Определителя бактерий Берги микоплазмы отнесены к отделу Tenericutes, классу Mollicutes, порядку Mycoplasmatales32.

32 От греческих слов: myce — гриб; plasma — плазма.

Отсутствие ригидной клеточной стенки повлекло за собой ряд морфологических, культуральных, цитологических особенностей, присущих этим микроорганизмам. Для них характерен ярко выраженный полиморфизм. В культуре одного вида можно одновременно обнаружить крупные шаровидные тела, мелкие зерна, клетки эллипсовидной, дискообразной, палочковидной и нитевидной формы. Последние могут ветвиться, образуя структуры, подобные мицелиальным. Для микоплазм описаны различные способы размножения: бинарное деление, фрагментация крупных тел и нитей, процесс, сходный с почкованием.

В культурах микоплазм обнаружены формы с наименьшими из всех известных клеточных микроорганизмов размерами. Поэтому, вероятно, именно микоплазмы можно считать наиболее простыми самостоятельно воспроизводящимися системами. По проведенным подсчетам теоретически наименьшая структурная единица, способная к самостоятельному воспроизведению на искусственной среде, не может иметь размеры меньше, чем сферическое тело диаметром 0,15 — 0,20 мкм или нить длиной приблизительно 13 мкм и диаметром примерно 20 нм. Все эти структуры встречаются в культурах микоплазм и, вероятно, могут рассматриваться, как жизнеспособные репродуцирующиеся формы. По объему генетической информации, содержащейся в геноме, микоплазмы занимают промежуточное положение между Е. coli и Т-фагами.

Отсутствие клеточной стенки привело к развитию у микоплазм более стабильной и эластичной ЦПМ по сравнению с ЦПМ бактериальных протопластов. Важная роль в обеспечении этих свойств принадлежит, по-видимому, холестерину — основному компоненту мембранных липидов паразитических микоплазм. Большая часть известных микоплазм для роста нуждается в экзогенном холестерине и других стеринах. Относительно недавно были обнаружены виды, не требующие для роста экзогенных стеринов. Это различие положено в основу деления порядка Mycoplasmatales на семейства Mycoplasmataceae и Spiroplasmataceae, в которых объединены стеринзависимые микоплазмы, и Acholeplasmataceae, куда вошли виды, не требующие для роста экзогенных стеринов. Отсутствие клеточной стенки обусловливает еще одну отличительную особенность микоплазм — их нечувствительность к антибиотикам, специфически действующим на эубактериальную клеточную стенку, и в первую очередь, к пенициллину и его аналогам.

Микоплазмы (особенно после обнаружения новых свободноживущих видов) представляют собой группу, чрезвычайно разнообразную с точки зрения физиолого-биохимических особенностей. Эти прокариоты могут расти на искусственных средах разной степени сложности (от простых минеральных сред до сложных органических) или только внутри организма-хозяина, из чего можно заключить, что диапазон их биосинтетических способностей весьма широк. Разнообразны и способы получения микоплазмами энергии. Среди них описаны виды, получающие энергию за счет окисления или сбраживания органических соединений (моно- и полисахаридов), а также, возможно, окисления неорганических соединений железа. Описаны микоплазмы, являющиеся строгими аэробами и облигатными анаэробами.

Если раньше считали, что микоплазмы — в основном формы, паразитирующие на человеке и высших животных, то теперь представление о способах существования и распространения этой группы прокариот в природе значительно расширено. Микоплазмы находят в почве и сточных водах, они выделены из каменного угля и горячих источников. Помимо свободножи-вущих форм, способных расти как на чисто минеральных средах, так и сапрофитно, описаны микоплазмы, существующие в различных симбиотических ассоциациях с бактериями, низшими грибами, растениями, птицами, высшими животными и человеком. Формы симбиоза также разнообразны. Иногда это, вероятно, комменсализм, в большинстве случаев — типичный паразитизм. Многие паразитические формы микоплазм патогенны. Они являются возбудителями заболеваний растений, животных и человека, например, М. pneumoniae — возбудитель острых респираторных заболеваний и пневмоний у человека.

Представители семейства Mycoplasmataceae — хемооргано-гетеротрофы, характеризующиеся высокими потребностями в питательных веществах. Энергетический метаболизм ферментативного или окислительного типа. Использование глюкозы происходит по гликолитическому пути. У микоплазм, осуществляющих полное окисление энергетического субстрата, обнаружен функционирующий ЦТК и цепь переносчиков электронов.

В состав семейства Acholeplasmataceae входит один род Acholeplasma, насчитывающий 8 видов стериннезависимых микоплазм. Наиболее хорошо изучена A. laidlawii — первая сапрофитная микоплазма, выделенная в 1936 г. из сточных вод Лондона. Сейчас в составе рода объединены свободноживущие сапрофитные микоплазмы, микоплазмы — паразиты млекопитающих и птиц; некоторые из них, возможно, патогенны.

В третье семейство Spiroplasmataceae выделены микоплазмы, схожие с таковыми семейства Mycoplasmataceae, но отличающиеся своеобразной морфологией: в стадии роста среди разнообразных форм преобладают спиралевидные нити. Из листьев цитрусовых растений выделена Spiroplasma citri. Особенностью ее строения является часто обнаруживаемый на мембране наружный слой, который, возможно, представляет собой модифицированную клеточную стенку или структуру, весьма напоминающую последнюю.

Группа 11. Эндосимбионты. В эту группу выделены прокариоты — эндосимбионты простейших, насекомых, грибов и беспозвоночных. Для большинства представителей эндосимбиоз об- лигатен и их не удалось культивировать в лаборатории в чистой культуре. Основные методы изучения эндосимбионтов — цитологические, с применением световой и электронной микроскопии. Важным признаком служит характеристика взаимоотношений с хозяевами, а также морфология эндосимбионтов, циклы развития, специфичность локализации в клетке хозяина. Спектр отношений эндосимбионтов с хозяевами очень широк: от мутуализма до паразитизма с проявлениями патогенности. Некоторым эндосимбионтам присвоены биномиальные названия. Так, среди эндосимбионтов простейших описано 5 родов и 14 видов.

Группа 12. Грамположительные кокки. В состав группы входят представители 15 родов, значительно различающихся филогенетически и фенотипически. Это облигатные аэробы, анаэробы или факультативные формы. Энергию получают за счет дыхания и/или брожения. Хемоорганогетеротрофы с различными потребностями в питательных веществах.

Бактерии, объединяемые в семейство Micrococcaceae — кокки, делящиеся более чем в одной плоскости, склонные не расходиться после деления и поэтому образующие скопления сферической или неправильной формы. В основном сапрофиты. Разрушая многие сложные органические вещества, выполняют функцию "мусорщиков".. К этой же группе отнесен род Streptococcus, представители которого получают энергию, осуществляя гомоферментативное молочнокислое брожение, и род Leuconostoc, бактерии, входящие в его состав, осуществляют гетероферментативное молочнокислое брожение. Представители этой группы обнаружены в почве, на поверхности злаков, в ротовой полости, желудочном тракте и дыхательных путях человека и животных. Некоторые виды, преимущественно относящиеся к роду Staphylococcus, патогенны.

Группа 13. Грамположительные палочки и кокки, образующие эндоспоры. В составе группы представители 6 родов. Два из них (Bacillus и Clostridium) наиболее многочисленны и интересны. Род Bacillus объединяет подвижные палочковидные клетки, размеры которых колеблются в довольно широких пределах. Жгутики расположены перитрихиально. Окрашивание по Граму различно: положительно или положительно только в молодой культуре. Облигатные или факультативные аэробы. Бактерии рода Bacillus синтезируют различные литические ферменты, расщепляющие полисахариды, белки, жиры и другие макромолекулы. Некоторые виды образуют антибиотики, такие как бацитрацин, субтилизин. Большинство бацилл — сапрофиты. Основное место их обитания — почва. Есть среди них и патогенные для животных и человека формы, например B. anthracis — возбудитель сибирской язвы, а также виды, вызывающие различные заболевания членистоногих.

В состав рода Clostridium входят палочки, отличающиеся от предыдущего рода формой спорообразования и облигатно анаэробным способом существования. Источник энергии в большинстве случаев — маслянокислое брожение. Большинство бактерий рода Clostridium — сапрофиты, обитатели почвы. Некоторые виды живут в кишечнике человека и животных. К этому роду относятся весьма опасные патогенные формы: С. tetani — возбудитель столбняка, С. perfringens и некоторые другие виды клостридиев — возбудители газовой гангрены, С. botulinum — продуцент экзотоксина, одного из самых сильных биологических ядов.

Группа 14. Грамположительные, не образующие спор палочки правильной формы. Группа — конгломерат, состоящий из 7 родов, объединенных несколькими общими морфологическими и физиологическими признаками: клетки палочковидной формы (от кокковидных до удлиненных, одиночных или образующих цепочки), мезофилы; строгие или факультативные аэробы, есть микроаэрофилы и аэротолерантные анаэробы; хемоорганогетеротрофы, растущие только на сложных средах.

Представители рода Lactobacillus, в составе которого около 50 видов, получают энергию в процессе гомоферментативного или гетероферментативного молочнокислого брожения. Широко распространены в природе: их можно обнаружить в почве, на разлагающихся остатках животного и растительного происхождения, в молоке и молочных продуктах, в кишечнике позвоночных; лишь единичные представители рода Lactobacillus обладают патогенными свойствами.

Группа 15. Грамположительные, не образующие спор палочки неправильной формы. Группа разнообразна. Большинство — Грамположительные палочки неправильной формы, растущие в присутствии воздуха и не образующие эндоспор, но есть в группе бактерии, имеющие форму кокков или палочек правильной формы, окрашивающиеся отрицательно по Граму и являющиеся строгими анаэробами.

Так, к роду Corynebacterium относятся формы, склонные к морфологической изменчивости. Кроме коротких палочек в культуре можно обнаружить кокковидные формы, клетки, имеющие булавовидные выпячивания, слабоветвящиеся формы. Для представителей этого рода характерно образование фигур, состоящих из расположенных под углом или примыкающих друг к другу дочерних клеток. Неподвижны. Хемоорганогетеротрофы. Энергию получают за счет дыхания или брожения. Преимущественно факультативные анаэробы, но некоторые — аэробы.

В состав рода входят свободноживущие виды, а также паразиты человека и животных. Некоторые из них патогенные, например, С. diphteriae — возбудитель дифтерии. Большая группа коринебактерий — возбудители болезней растений.

К группе отнесены и бактерии рода Arthrobacter, для которых характерна большая по сравнению с предыдущим родом тенденция к ветвлению и образованию кокковидных клеток. Культуры, находящиеся в экспоненциальной фазе роста, неправильной палочковидной формы; культуры же, перешедшие в стационарную фазу, состоят в основном или исключительно из кокковидных форм. При перенесении последних на свежую питательную среду происходит "удлинение" кокковидных клеток путем образования выпячиваний; у одной клетки может быть от двух до четырех таких выпячиваний, приводящих к появлению палочек неправильной формы или клеток с рудиментарным ветвлением. Виды в молодой культуре (на стадии палочек) неподвижны или подвижны, окраска по Граму в этот период может быть нечеткой, но у кокковых форм она положительна. Все виды — облигатно аэробные хемоорганогетеротрофы. Бактерии рода Arthrobacter — основные представители микрофлоры почвы, активно участвующие в разложении органических веществ.

Группа 16. Микобактерии. Объединены в семейство Micobacteriaceae и представлены одним родом Mycobacterium. Микобактерии — грамположительные, неподвижные палочки, прямые или неправильных очертаний (рис. 42, А). В процессе развития палочковидные формы превращаются в кокковидные. Характерным морфологическим признаком микобактерий является образование ветвящихся форм. Степень ветвления зависит от вида бактерий и условий выращивания, в первую очередь от состава питательной среды. Ветвление можно наблюдать только в молодых активно размножающихся культурах. У микобактерий мицелий не образуется. На некоторых стадиях роста характерна повышенная устойчивость к кислотам и спиртам. Большинство микобактерий — сапрофиты, живущие в почве и использующие различные органические соединения (белки, углеводы, жиры, воска, парафины). Некоторые виды патогенны, например, М. tuberculosis — возбудитель туберкулеза, М. leprae — возбудитель проказы.

Рис. 42. Микобактерии (А) и нокардии (Б):1 — воздушный; 2 — субстратный мицелий  

Группа 17. Нокардиоформы. В этой группе объединены бактерии, в цикле развития которых существует мицелиальная стадия. В старых культурах мицелий распадается на палочковидные или коккоидные элементы (рис. 42, 5). Настоящих спор нет. Группа достаточно разнообразна по морфологическим и физиолого-биохимическим признакам: большинство представителей (но не все) обнаруживают в старых культурах фрагментацию мицелия, образование воздушного мицелия, формирование конидий.

Все представители группы грамположительные аэробы. Молярная доля ГЦ в составе ДНК — 63 — 79%. В основу деления на роды положены такие признаки, как химический состав клеточной стенки, набор липидов.

Группа 18. Фототрофные бактерии, осуществляющие бескислородный фотосинтез. В эту группу отнесены фотосинтезирующие эубактерии, характеризующиеся специфическим набором пигментов и особым типом фотосинтеза: пигменты представлены различными видами бактериохлорофилла и каротиноидов; фотосинтез не сопровождается выделением кислорода.

Группа 19. Фототрофные бактерии, осуществляющие кислородный фотосинтез. Группа представлена эубактериями, содержащими разные наборы фотосинтетических пигментов, но обязательно — хлорофилл a; фотосинтез сопровождается выделением молекулярного кислорода.

Группа 20. Аэробные хемолитотрофные бактерии и близкие к ним организмы. К этой группе относятся прокариоты, получающие энергию за счет окисления восстановленных неорганических соединений азота, серы, железа, а также молекулярного водорода. Группа разделена на 4 подгруппы в зависимости от химической природы окисляемых неорганических соединений.

В первую подгруппу включены грамотрицательные бактерии, объединенные в семейство Nitrobacteraceae, источником энергии для которых являются процессы окисления аммонийного азота или нитритов. Во второй подгруппе объединены бактерии, способные окислять неорганические восстановленные соединения серы. У большинства из них доказана способность использовать этот процесс для получения клеточной энергии. Облигатно хемолитотрофные водородные бактерии, представленные одним родом Hydrogenobacter, выделены в третью подгруппу. В четвертую подгруппу отнесены бактерии, способные окислять и/или откладывать вне клетки окислы железа и марганца. Последние накапливаются в капсулах или во внеклеточном материале, редко — внутри клетки. Поскольку большинство бактерий этой подгруппы не получено до сих пор в чистой культуре, многие стороны их метаболизма остаются неясными.

Группа 21. Почкующиеся и/или стебельковые бактерии. В эту группу входят бактерии, образующие состоящие из слизи отростки (стебельки), не связанные с цитоплазмой клетки, или нитевидные клеточные выросты — простеки (рис. 43). Бактерии рода Nevskia образуют слизистые отростки, не связанные с цитоплазмой клетки. Слизь, выделяющаяся с одной стороны клетки, имеет вид стебелька, на конце которого располагается клетка. Стебельки обнаруживают дихотомическое ветвление, повторяющее деление зрелых клеток (рис. 43, 1). Своеобразный вид имеют стебельки, образуемые бактериями рода Gallionella: клетки, имеющие бобовидную форму, на вогнутой стороне выделяют гидроокись железа в коллоидной форме в виде многочисленных тонких фибрилл, образующих спирально извитую ленту (рис. 43, 2). Изучение Gallionella в чистой культуре показало, что энергия, освобождающаяся при окислении железа, не используется клеткой.

Рис. 43. Почкующиеся и/или стебельковые бактерии: 1 — Nevskia; 2 — Gallionella; 3 — Hyphomicrobium; 4 — Caulobacter (по Brock, 1970; Lechevalier, Pramer, 1971; Schlegel, 1972)  

Выросты представляют собой выпячивание клеточного содержимого, не отделенного от цитоплазмы клетки. Окружены клеточной стенкой. В них можно различить цитоплазматическую мембрану, цитоплазму с рибосомами, иногда ядерный материал и мезосомы. Выросты приводят к увеличению клеточной поверхности и ЦПМ и служат для обеспечения повышенного транспорта веществ в клетку. Для простекобактерий это имеет первостепенное значение, так как многие из них обитают в условиях низкой концентрации органических веществ в среде. Общим свойством простекобактерий является способность расти с сохранением типичной морфологии только при незначительном содержании органического субстрата в среде. При дефиците питательных веществ выросты удлиняются. С увеличением концентрации необходимых для роста питательных компонентов выросты сильно сокращаются или исчезают совсем.

У некоторых бактерий выросты имеют отношение к функции размножения. Бактерии, принадлежащие к роду Hyphomicrobium, — палочки с заостренными концами, но могут быть овальной, яйцеобразной или бобовидной формы. Для них характерен своеобразный цикл развития (рис. 43, 3). Прикрепленная к субстрату материнская клетка образует нитевидный вырост, куда переходит один из поделившихся нуклеоидов. Вырост, удлиняясь, формирует гифоподобную структуру, на конце которой появляется почка. В процессе созревания почки образуется жгутик. Дочерняя клетка (созревшая почка) отделяется от материнской и в течение некоторого времени подвижна. Затем она прикрепляется к субстрату или другим клеткам, теряет жгутик и формирует вырост и почку. Нитевидные выросты клетки могут ветвиться, и на концах каждой ветви формируются почки. В некоторых случаях созревшие почки не отделяются от материнской клетки и в свою очередь формируют выросты и почки. В результате имеет место скопление гиф и клеток. Выросты могут появляться на обоих полюсах клетки.

<<< НазадСодержаниеДальше >>>

medbookaide.ru