MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Гусев М. В., Минеева Л. А. - Микробиология

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
<<< НазадСодержаниеДальше >>>

Мигрирующие элементы, представленные транспозонами и IS-элементами, — это линейные молекулы двухнитевой ДНК, размеры которых колеблются от 200 до 6000 пар нуклеотидов. Отличительная особенность мигрирующих элементов — их неспособность к автономной репликации. Мигрирующие элементы могут встраиваться в разные участки бактериальной хромосомы или мигрировать с бактериальной хромосомы на плазмиду; их репликация осуществляется под контролем тех же механизмов, что и у соответствующей хромосомы или плазмиды. Частота переносов (транспозиции) мигрирующих элементов колеблется от 10-4 до 10-7. IS-элементы содержат информацию, необходимую только для их переноса внутри клетки, никаких выявляемых признаков в них не закодировано. Транспозоны устроены более сложно: в них включены некоторые гены, не имеющие отношения к процессу транспозиции. Известны транспозоны, содержащие гены устойчивости к антибиотикам, ионам тяжелых металлов и другим ингибиторам.

Для переноса мигрирующих элементов между клетками нужен переносчик, которым могут быть определенные плазмиды или фаги. Встраивание мигрирующих элементов в бактериальную хромосому оказывает мутагенное действие, так как при этом происходит включение фрагмента ДНК, приводящее к изменению порядка расположения нуклеотидов в триплете и, как следствие этого, нарушению процесса транскрипции.

Изменение генетического материала

Первое, что поразило исследователей, когда они поближе познакомились с миром прокариот, — огромное разнообразие присущих им признаков. Это послужило в свое время основанием для дискуссии о том, существуют ли у прокариот реально очерченные виды, между которыми нет переходов, или же имеет место почти бесконечная вариабельность одного вида, так что в конечном итоге само понятие "вид" применительно к этим организмам теряет тот смысл, который в него вкладывается. Спор был разрешен после разработки Р. Кохом метода чистых культур. Было доказано, что и у бактерий вид — это реальность. Представления о простоте переходов между родами и видами оказались неверными.

В процессе экспериментальной работы с прокариотами исследователи часто наблюдали, что популяция одного вида при культивировании в течение длительного времени или в разных условиях подвержена изменениям. Накопилось огромное количество фактов, иллюстрирующих эти изменения, однако механизмы, лежащие в основе наблюдаемых явлений, были непонятны. И только успехи, достигнутые за последние десятилетия в области изучения строения и функционирования генетического аппарата прокариот, позволили разобраться в этом вопросе.

Прежде чем переходить к дальнейшему изложению материала, целесообразно ввести некоторые понятия. Генотипом, или геномом, называют совокупность всех генов, присущих данному организму, т. е. его генетическую конституцию. Под фенотипом понимают совокупность признаков, присущих данному организму. Оказалось, что все наблюдаемые изменения можно разделить на два типа. К первому относят те из них, которые, как правило, проявляются у подавляющего большинства особей в популяции при изменении внешних условий и наблюдаются до тех пор, пока действует фактор, вызвавший эти изменения. Такой тип изменчивости получил название не наследственного, или модификационного, а само явление названо модификацией.

Ко второму типу относятся изменения признаков, которые первоначально возникают как редкие события в популяции особей (с частотой 1 на 104—1011 клеток). Если измененные особи имеют некоторое преимущество перед неизмененными, выражающееся в повышенной скорости роста или жизнеспособности, они постепенно накапливаются в популяции и вытесняют исходные особи. Изучение особенностей второго типа изменений привело к заключению, что последние возникают случайно. И наконец, эти изменения постоянны, т. е. передаются из поколения в поколение при размножении организма. Такой тип изменчивости был назван наследственным.

Долгое время не было ясно, каков механизм модификационных изменений, могут ли они наследоваться и какова их роль в эволюции организмов. В настоящее время показано, что модификация — изменение, происходящее на уровне фенотипа и не затрагивающее клеточный генотип. Все признаки клетки определяются ее генотипом, но в определенных условиях она пользуется не всей заложенной в ней генетической информацией, количество которой гораздо больше, чем необходимо клетке для существования в конкретных условиях. Реакция клетки на изменение внешних условий приводит к проявлению какихто новых признаков, свойств, которые не обнаруживались в исходной культуре. Однако информация, необходимая для проявления этих признаков, обязательно содержится в клеточном Геноме. Модификация есть результат пластичности клеточного метаболизма, приводящего к фенотипическому проявлению "молчащих" генов в конкретных условиях. Таким образом, модификационные изменения имеют место в рамках неизменного клеточного генотипа.

Существует несколько типов модификационных изменений. Наиболее известны адаптивные модификации, т. е. ненаследственные изменения, полезные для организма и способствующие его выживанию в изменившихся условиях. Причины адаптивных. модификаций кроются в механизмах регуляции действия генов. Адаптивной модификацией является адаптация клеток Е. coli к лактозе как новому субстрату (см. гл. 8). У ряда бактерий обнаружена универсальная адаптивная реакция в ответ на различные стрессовые воздействия (высокие и низкие температуры, резкий сдвиг pH и др.), проявляющаяся в интенсивном синтезе небольшой группы сходных белков. Такие белки получили название белков теплового шока, а само явление — синдром теплового шока. Стрессовое воздействие на бактериальную" клетку вызывает ингибирование синтеза обычных белков, но индуцирует синтез небольшой группы белков, функция которых предположительно заключается в противодействии стрессовому воздействию путем защиты важнейших клеточных структур, в первую очередь нуклеоида и мембран. Еще не ясны те регуляторные механизмы, которые запускаются в клетке при воздействиях, вызывающих синдром теплового шока, но очевидно, что это универсальный механизм неспецифических адаптивных модификаций. Не все модификации обязательно адаптивны. При интенсивном действии многих агентов наблюдаются ненаследуемые изменения, случайные по отношению к вызвавшему их воздействию. Они проявляются только в условиях, которые их вызывают. Причины появления таких фенотипически измененных клеток связаны с ошибками процесса трансляции, вызванными этими агентами.

Таким образом, модификационная изменчивость не затрагивает генетической конституции организма, т. е. не является наследственной. В то же время она вносит определенный вклад в процесс эволюции. Адаптивные модификации расширяют возможности организма к выживанию и размножению в более широком диапазоне условий внешней среды. Возникающие в этих условиях наследственные изменения подхватываются естественным отбором и таким путем происходит более активное освоение новых экологических ниш и достигается более эффективная приспособляемость к ним.

Наследственные изменения можно подразделить на изменения, возникающие в результате мутаций и рекомбинаций генетического материала. Скачкообразные изменения в генетическом материале клетки, приводящие к появлению новых признаков, получили название мутаций. Мутации возникают в популяции особей всегда, часто без видимых воздействий на популяцию. Такие мутации, причины возникновения которых нам неизвестны, называются спонтанными. Повышать частоту мутаций по сравнению со спонтанным фоном, т. е. индуцировать их, могут физические, химические и биологические факторы, действующие на генетический материал клетки. Физические факторы — это прежде всего коротковолновое излучение (ультрафиолетовые и рентгеновские лучи). К химическим мутагенам относятся аналоги оснований, производные акридина, алкилирующие и дезаминирующие агенты. Биологические факторы — это в первую очередь мигрирующие элементы (транспозоны и IS-элементы).

Мутации, независимо от того, имеют ли они спонтанное происхождение или индуцированы какимлибо мутагеном, по характеру перестроек, происшедших в ДНК, можно разделить на мутации, состоящие в изменении одного нуклеотидного остатка молекулы ДНК, так называемые точковые мутации, и мутации, при которых наблюдается изменение участка молекулы ДНК размером больше одного нуклеотида. Точковые мутации в свою очередь могут быть разделены на несколько классов в зависимости от того, какие конкретно химические перестройки происходят в молекуле ДНК в рамках одного нуклеотидного остатка: замена, вставка или выпадение. К мутациям, затрагивающим сегмент бактериальной хромосомы, ведут выпадение нескольких оснований или даже генов, перемещение их в пределах одной хромосомы, умножение или удвоение части хромосомы.

Частым типом структурных повреждений ДНК, вызываемых УФизлучением, является образование пиримидиновых димеров в результате ковалентного связывания соседних пиримидиновых оснований. Реже УФ вызывает разрыв водородных связей, образование межцепочечных поперечных сшивок и поперечных сшивок между ДНК и белком. Ионизирующие излучения всех видов вызывают главным образом одноцепочечные разрывы в ДНК; разрывов, поражающих обе цепи, обычно на порядок меньше. Различные химические мутагены индуцируют образование внутрицепочечных и межцепочечных поперечных сшивок и одноцепочечные разрывы ДНК.

В процессе эволюции прокариоты выработали способы защиты генетического материала от повреждающего воздействия облучения и различных химических факторов. В клетках прокариот обнаружены эффективные системы репарации мутационных повреждений.

Наиболее изученными механизмами восстановления повреждений ДНК являются фотореактивация, вырезание повреждений и пострепликационное, или рекомбинационное, восстановление. Фотореактивация — наиболее простой механизм, восстанавливающий лишь индуцированные УФизлучением повреждения ДНК, сопровождающиеся образованием пиримидиновых димеров. Особенность фотореактивации в том, что ее действие распространяется только на одну цепь ДНК и не зависит от того, является ли молекул" В ДНК одно или двухцепочечной. Осуществляется фотореактивация светозависимым фотореактивирующим ферментом, обеспечивающим специфическое расщепление пиримидиновых димеров (рис. 38, А).

Рис. 38. Механизмы восстановления повреждений ДНК. А — фотореактивация пиримидиновых димеров; 1 — фотореактивирующий фермент + видимый свет. Б — вырезание одноцепочечных повреждений: 1 — сегмент интактной ДНК; 2 — повреждение в одной из цепей ДНК; 3 — вырезание короткого сегмента, содержащего поврежденный участок; 4 — заполнение образовавшейся бреши нуклеотидами, комплементарными к интактной цепи, функционирующей в качестве матрицы; сшивание их с помощью ДНКполимеразы и ДНКлигазы; В — пострепликационное восстановление ДНК; — сегмент двухцепочечной молекулы ДНК, содержащей повреждение; 2 — репликация молекулы, приводящая к образованию двух молекул, одна из которых содержит повреждение и брешь в разных цепях; 3 — обмен генетическим материалом между идентичными цепями сестринских молекул; 4 — образование молекул, каждая из которых содержит одну интактную цепь, а в другой — повреждение или брешь. Крестиком обозначено повреждение; точками — восстановительный синтез; волнистой линией — синтезированные цепи дочерних молекул ДНК  

Вырезание повреждений — основной темновой механизм восстановления различных одноцепочечных повреждений ДНК, в том числе и пиримидиновых димеров. Особенность этого механизма репарации в том, что восстановление одноцепочечных повреждений происходит только тогда, когда неповреждена комплементарная цепь молекулы ДНК. В процессе темновой репарации происходит вырезание в одной из цепей молекулы ДНК коротких сегментов (длиной около 30 нуклеотидов), содержащих поврежденный участок, и последующее заполнение образовавшейся бреши комплементарными нуклеотидами с использованием неповрежденной цепи ДНК в качестве матрицы (рис. 38, Б).

Механизмы, обеспечивающие восстановление повреждений в обеих цепях молекулы ДНК, зависят от характера повреждений. Принципиальная схема заключается в следующем (рис. 38, В). ДНКполимераза, катализирующая репликацию ДНК, "встретив" на своем пути повреждение, "перескакивает" через него, и процесс репликации продолжается. Образуются две дочерние молекулы, одна из которых содержит в одной цепи первичное повреждение, в другой — брешь, возникшую при репликации и располагающуюся напротив повреждения.

Заделывание бреши происходит путем генетического обмена между идентичными цепями сестринских двухцепочечных молекул. В результате каждая из них имеет теперь по одной неповрежденной цепи, которая может служить матрицей в процессе репарации повреждений разного типа, как это изображено на схеме Б того же рисунка.

Фенотипическое проявление мутаций. Поскольку мутация — это стабильное изменение наследственного материала клетки, она реализуется по тем же каналам, что и любая другая генетическая информация. На этом пути судьба мутаций различна. Некоторые из них не влияют на признаки организма, оставаясь "молчащими". Такие мутации могут не проявляться в процессе трансляции, т. е. не приводить к изменению аминокислотной последовательности синтезируемого белка. В другом случае изменение может происходить вдали от активного центра фермента и потому не сказываться на его функции. Если же мутация приводит к изменению в активном центре или резко влияет на его структуру, это сразу сказывается на функциях фермента. Диапазон изменения функциональной активности фермента в этом случае велик: от незначительного понижения активности до полной ее потери. В последнем случае это часто приводит к гибели организма.

Для проявления мутации необходимо, чтобы прошел по крайней мере один цикл репликации ДНК, в которой исходно имело место изменение нуклеотидной последовательности (премутация). Только если это исходное изменение закрепится после репликации в дочерней молекуле ДНК, оно становится стабильным, а отсюда и наследственным. Для выражения мутации в фенотипе необходимо прохождение этапов транскрипции и трансляции. Иногда для проявления мутационно измененного признака, т. е. фенотипического выражения мутации, необходимо несколько клеточных делений. Так, если мутация привела к нарушению способности синтезировать какойлибо витамин, например тиамин, то в течение нескольких генераций потребность в тиамине у мутантных клеток не обнаруживается. В этот период мутантные клетки доиспользуют тиамин, содержащийся в исходной немутантной клетке. Когда же запасы витамина иссякнут, мутанты смогут размножаться только при добавлении экзогенного тиамина.

На проявление мутантных признаков влияет также количество копий хромосомы, содержащихся в клетке. Все прокариоты гаплоидны, имеют набор генов, локализованных в одной хромосоме. В определенных условиях в клетке можно обнаружить несколько копий одной хромосомы. Если в такой клетке произошла мутация, приведшая к нарушению синтеза определенного метаболита, то она сразу (после одного цикла репликации—транскрипции—трансляции) не проявится, поскольку синтез необходимого клетке метаболита будет осуществляться в результате функционирования неповрежденных генов, содержащихся в остальных хромосомных копиях. Для фенотипического выражения мутантного гена необходимо, чтобы он содержался в клетке в "чистом" виде, т. е. клетка имела одну копию хромосомы с мутантным геном, или чтобы все копии хромосомы в клетке имели одинаковый генотип. Это происходит через несколько клеточных делений (рис. 39).

Рис. 39. Проявление мутаций в прокариотной клетке, имеющей четыре копии хромосомы (по Schlegel, 1972)  

Ко второму типу наследственной изменчивости относятся изменения, возникающие у прокариот в результате рекомбинации генетического материала, при которой происходит частичное объединение геномов двух клеток. Известны три основных способа, приводящих к рекомбинации генетического материала прокариот (конъюгация, трансформация и трансдукция), различающихся механизмами передачи хромосомной ДНК.

При конъюгации, для которой необходим непосредственный контакт между бактериальными клетками, осуществляется направленный перенос генетического материала от клеткидонора в клеткуреципиент. Как правило, в клеткуреципиент переносится только часть генетического материала клеткидонора, в результате чего образуется неполная зигота, или мерозигота, содержащая часть генома донора и полный геном клеткиреципиента. Участки перенесенной от донора ДНК находят гомологичные участки в молекуле ДНК реципиента, между которыми происходит генетический обмен (рис. 40, А). В результате часть донорной ДНК встраивается (интегрируется) в геном реципиента, а соответствующая часть реципиентной ДНК из него исключается.

Рис. 40. Рекомбинация между гомологичными (А) и негомологичными (Б) фрагментами ДНК. Объяснения см. в тексте  

Трансформация бактерий заключается в переносе ДНК, выделенной из одних клеток, в другие. Для трансформации не требуется непосредственного контакта между двумя клетками. Способность ДНК проникать в клеткуреципиент зависит как от природы самой ДНК, так и от физиологического состояния клеткиреципиента. Трансформирующей ДНК могут быть только высокомолекулярные двухцепочечные фрагменты, при этом проникать в бактериальную клетку может ДНК, выделенная из разных биологических источников, но включаться в геном — только ДНК с определенной степенью гомологичности. После того как экзогенный фрагмент ДНК, проникший в клетку, нашел гомологичный фрагмент ДНК клеткиреципиента, между ними происходит генетический обмен аналогично тому, как это имеет место на последнем этапе конъюгации (рис. 40, А).

Конъюгация и трансформация — не единственные способы передачи генетического материала. Гены могут переноситься из одной бактериальной клетки в другую с помощью умеренных фагов. Такой перенос бактериальных генов получил название трансдукции. Трансдукция оказывается возможной, если в процессе размножения фага одна из частиц случайно захватит фрагмент бактериальной хромосомы, как правило, содержащий очень небольшое число генов. Когда такая фаговая частица заражает бактериюреципиент, бактериальная ДНК проникает в клетку таким же путем, как фаговая. Между трансдуцированной бактериальной ДНК и гомологичным участком бактериальной хромосомы может произойти обмен, и как следствие его возникают рекомбинанты, несущие небольшую часть генетического материала клеткидонора (рис. 40, А). Передача признаков с помощью фагов показана для бактерий, принадлежащих к разным родам.

Наконец, еще один путь переноса генетического материала у прокариот осуществляется с помощью плазмид определенного типа, обладающих генами, обеспечивающими эту возможность. Такие плазмиды помимо переноса собственного генетического материала могут обеспечивать перенос хромосомных генов, плазмид, не обладающих способностью к самостоятельному переносу, а также осуществлять передачу транспозонов из плазмиды в хромосому или другую плазмиду.

Все известные способы передачи генетической информации с помощью плазмид создают огромные возможности для интенсивных генетических обменов между клетками различных бактерий. Плазмидам и другим нехромосомным генетическим элементам принадлежит основная роль в передаче генетической информации "по горизонтали". Можно предположить, что в природе любая генетическая информация может быть перенесена в любую клетку прокариот, если не прямо, то через посредников. Подтверждением этого могут служить данные по введению с помощью сконструированной плазмиды в бактериальную клетку эукариотной ДНК и ее репродукции там.

Как редкое событие, происходящее с частотой 10–4—10–7, плазмиды или отдельные гены, входящие в их состав, могут включаться в бактериальную хромосому. Поскольку ДНК плазмиды и бактериальной клетки не имеют одинаковых нуклеотидных последовательностей, т. е. не являются гомологичными, рекомбинация между ними происходит не по механизму обмена, а по механизму встраивания (рис. 40, Б). Рекомбинации такого типа происходят также с участием транспозонов и IS-элементов при их перемещении (транспозиции) в пределах хромосомы. Встраивание плазмид и мигрирующих элементов помимо того, что приводит к введению в хромосому дополнительного генетического материала, может вызывать перестройку бактериального генома: нарушать целостность генов или регуляцию их функционирования, т. е. вызывать мутации.

<<< НазадСодержаниеДальше >>>

medbookaide.ru