MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Гусев М. В., Минеева Л. А. - Микробиология

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
<<< Назад Содержание Дальше >>>

У бактерий рода Caulobacter клеточные выросты не имеют отношения к репродуктивной функции (рис. 43, 4). У представителей этого рода клетки большей частью палочковидной формы с одним полярно расположенным жгутиком. Прикрепившись к какой-нибудь поверхности тем концом, на котором расположен жгутик, они формируют вырост, имеющий такое же происхождение и внутреннее строение, как у бактерий рода Hyphomicrobium. На конце выроста выделяется небольшое количество клейкого вещества, с помощью которого клетка прикрепляется к субстрату. Размножение осуществляется поперечным делением, при этом к концу деления одна клетка несет стебелек, другая — жгутик. После разделения клетка, снабженная жгутиком, формирует стебелек с клейким веществом, прикрепляется к субстрату и переходит в неподвижную фазу. В эту же группу отнесены и бактерии, размножающиеся почкованием, но не образующие выросты.

Большинство рассмотренных выше бактерий — хемоорганогетеротрофы; некоторые — олигокарбофилы. Как правило, облигатные аэробы, есть и факультативные аэробы. Описаны виды, тяготеющие к низким концентрациям кислорода в среде (микроаэрофилы).

Рис. 44. Бактерии, образующие слизистую оболочку (влагалище): 1 — Sphaerotilus; 2 — Leptothrix (no Lechevalier, Pramer, 1971)  

Группа 22. Бактерии, образующие слизистую оболочку (влагалище). В состав группы входят нитевидные бактерии, окруженные общим влагалищем (рис. 44). Нити могут быть свободно плавающими или прикрепленными к различным находящимся в воде предметам. Влагалище состоит из гетерополисахарида, часто инкрустированного окислами железа или марганца. Клетки размножаются внутри влагалища поперечным делением. Выходящие из влагалища одиночные клетки могут быть снабжены жгутиками, с помощью которых они перемещаются, или же жгутики отсутствуют, и одиночные клетки не способны к активному движению. Все бактерии этой группы — аэробы и хемоорганогетеротрофы. Наиболее распространены представители родов Sphaerotilus и Leptothrix. Бактерии рода Sphaerotilus — типичные обитатели сточных вод. Они хорошо растут в проточной воде, богатой органическими веществами, а представители рода Leptothrix — в бедных органическими веществами местах с высоким содержанием железа.

Группа 23. Нефотосинтезирующие скользящие бактерии, не образующие плодовых тел. К этой группе отнесены морфологически и физиологически разнообразные бактерии. Большинство объединяет способность передвигаться по твердому субстрату без помощи жгутиков. Внутри группы выделены 3 порядка. Основной по числу представителей — порядок Cytophagales. В него помещены грамотрицательные бактерии, имеющие палочковидную форму, часто плеоморфные. Способны использовать различные полисахариды (агар, целлюлозу, хитин, крахмал, пектин и др.). Источником энергии служит дыхание, но некоторые могут получать энергию за счет брожения.

Рис. 45. Представители группы нефотосинтезирующих скользящих бактерий, не образующих плодовых тел: 1 — Beggiatoa; 2 — Vitreoscilla; 3 — Leucothrix (no Lechevalier, Pramer, 1971)  

В порядок Beggiatoales объединены нитчатые формы. Нити эластичны и способны к скользящему движению. Разделение на роды осуществляется в зависимости от способности откладывать или нет в клетке гранулы серы при росте в присутствии сульфида (рис. 45, 1, 2). Сходной морфологией обладают бактерии рода Leucothrix. Они образуют длинные нити, состоящие из овальных или цилиндрических клеток. Нити обычно прикреплены к субстрату и неподвижны (рис. 45, 3). Размножаются с помощью одиночных подвижных клеток, выходящих из нити. Во многих отношениях напоминают нитчатые цианобактерии, отличаясь отсутствием фотосинтетических пигментов.

Группа 24. Скользящие бактерии, образующие плодовые тела: миксобактерии. Включает один порядок Myxococcales, подразделяющийся на 4 семейства. Это палочковидные грамотрицательные бактерии, имеющие тонкие эластичные клеточные стенки. Для них характерно образование слоя слизи, окружающего клетку. Бактерии могут передвигаться по твердому субстрату скользящими движениями. Локомоторные структуры (жгутики) отсутствуют. Миксобактерии образуют так называемые плодовые тела, внутри которых клетки переходят в покоящееся состояние (см. рис. 21). Представители порядка — облигатно аэробные хемоорганогетеротрофы. Энергию получают только за счет дыхания. Синтезируют активные литические ферменты, способные гидролизовать такие макромолекулы, как полисахариды (целлюлоза, клетчатка, хитин), белки, нуклеиновые кислоты, эфиры жирных кислот. С этим связана роль миксобактерии в природе: они активно разрушают мертвые растительные остатки. Многие миксобактерии способны лизировать. клетки прокариотных и эукариотных микроорганизмов. Хорошо растут на поверхности твердых сред. Основное место обитания — почва.

Группа 25. Архебактерии. В соответствии с современными представлениями в эту группу выделены прокариоты, представляющие одну из трех линий эволюции жизни (см. рис. 41, Б).

В IX издании Определителя бактерий Берги впервые сделана попытка классифицировать известные архебактерии. Они разделены на 5 подгрупп. В I, самую большую, подгруппу включены метаногенные бактерии, главным и характерным признаком которых является способность образовывать метан в качестве конечного продукта энергетического метаболизма.

Во II подгруппу отнесены экстремально термофильные, строго анаэробные формы, образующие H2S из сульфата в процессе диссимиляционной сульфатредукции.

Экстремально галофильные архебактерии, составляющие III подгруппу, представлены грамположительными или грамотрицательными формами, аэробными или факультативно анаэробными хемоорганотрофами. Характерна потребность в высоких концентрациях NaCl. Некоторые виды содержат бактериородопсин и способны использовать энергию света для синтеза АТФ. В природе распространены в местах с высокой концентрацией соли: в соленых озерах, белковых продуктах, законсервированных с помощью соли, например в соленой рыбе.

IV группа представлена архебактериями без клеточной стенки. В ее составе один род Thermoplasma, вид Т. acidophilum.

К V подгруппе отнесены архебактерии, характеризующиеся совокупностью следующих признаков: облигатные термофилы; ацидофилы или нейтрофилы; аэробы, факультативные или строгие анаэробы; автотрофы или гетеротрофы. Метаболизм большинства из них связан с молекулярной серой (S0). Представители порядка Thermoproteales в процессе хемолитоавтотрофного. роста получают энергию в реакции:

H2 + S0 « H2S.

При использовании органических субстратов S0 служит конечным акцептором электронов, конечные продукты энергетического метаболизма — CO2 и H2S.

Представители порядка Sulfolobales могут в аэробных условиях окислять H2S до S0 и далее до SO42 – , а в анаэробных — восстанавливать S0 до H2S с участием H2.

Группы. 26 — 33: актиномицеты. Сравнительный анализ 16S рРНК привел к заключению, что все грамположительные эубактерии образуют одну из 10 основных филогенетических ветвей, выявленных среди изученных прокариот. В свою очередь грамположительные эубактерии на основании данных по нуклеотидному составу ДНК распадаются на 2 основные ветви: к одной относятся организмы, молярное содержание ГЦ в ДНК которых составляет больше 55%, к другой — группы Bacillus — Clostridium — Streptococcus с содержанием в ДНК ГЦ меньше 50%. В соответствии с проведенными исследованиями грамположительные эубактерии с молярным содержанием ГЦ-оснований больше 55%, обнаруживающие родство на основании данных анализа 16S рРНК и гибридизации ДНК, относят к актиномицетам.

При последующей их систематике большое значение придают морфологическим признакам. Эта группа объединяет организмы с разной морфологией: от кокков и палочек до форм, образующих ветвящиеся нити или формирующих развитый мицелий. В последнем случае при выращивании актиномицетов на твердых питательных средах различают субстратный и воздушный мицелий. Субстратный мицелий развивается в толще агаризованной среды, над поверхностью которой разрастаются гифы воздушного мицелия. Актиномицеты характеризуются разными способами размножения. Большинство размножаются с помощью спор, образующихся в специальных органах спороношения — спорангиях. Последние различаются строением (длинные или короткие, прямые или спиралевидные с разным числом завитков) и расположением (последовательное, супротивное, мутовчатое и др.).

В последнее время все больший удельный вес в таксономических целях занимают сведения о химическом составе и структуре отдельных клеточных компонентов: генетическом материале, клеточной стенке, мембранах и др. ГЦ-показатель ДНК актиномицетов колеблется в пределах от 58 до 75%. На основании присутствия характерных аминокислот пептидного хвоста пептидогликана и Сахаров, входящих в состав полисахаридов, у актиномицетов выделено несколько типов клеточной стенки. Кроме того, в систематике актиномицетов используют культуральные, физиолого-биохимические, экологические признаки. Только результаты анализа 16S рРНК у актиномицетов, относящихся к разным родам, позволили разделить их на 7 групп. В большинстве случаев эти группы совпадают с предложенными в IX издании Определителя бактерий Берги, хотя при классификации последних наряду с данными анализа 16S рРНК и нуклеотидного содержания ДНК учитывались также морфологические, химические и физиологические признаки. Вопрос о присвоении даже некоторым выделенным группам таксономического ранга пока не ясен.

В дальнейшем при характеристике выделенных в определителе групп актиномицетов мы остановимся в основном на их краткой морфологической характеристике.

Рис. 46. Актиномицеты рода Dermatophilus (А), Actinoplanes (Б), Micromonospora (В): 1 — воздушный; 2 — субстратный мицелий; 3 — спорангий; 4 — споры; 5 — капсула  

Группа 26. Нокардиоподобные актиномицеты. В этой группе дана характеристика организмов, уже описанных в группе 17 (см. рис. 42, 5), но несколько более детализированная и дополненная отнесением к ней представителей еще двух родов.

Группа 27. Актиномицеты. с многоклеточными спорангиями. В эту группу выделены актиномицеты, характеризующиеся своеобразным строением вегетативного тела (таллома): мицелиальные нити (гифы) делятся в продольном и поперечном направлениях, в результате чего образуется паренхиматозная масса клеток, представляющая собой спорангии (рис. 46, А). У представителей родов Geodermatophilus и Dermatophilus стадия в виде нитевидного мицелия в цикле развития отсутствует или рудиментарна. В состав рода Frankia входят виды с хорошо развитым нитевидным мицелием, спорангии формируются только из части клеток нити в виде интеркалярных или терминальных "опухолей". При распаде спорангиев из них освобождаются подвижные или неподвижные споры. Воздушный мицелий отсутствует.

Все представители группы — хемоорганогетеротрофы с высокими пищевыми потребностями, аэробы (главным образом микроаэрофилы), мезофилы. Представители рода Frankia развиваются в качестве эндосимбионтов в корневых клубеньках небобовых растений. Для клубеньков показана способность фиксировать молекулярный азот. Бактерии этой группы распространены в почве, воде, обитают на кожных покровах млекопитающих.

Группа 28. Актинопланеты. В группу объединены актиномицеты, характеризующиеся приспособленностью к обитанию в водной среде, имеющие подвижную стадию в течение жизненного цикла. В процессе роста образуют развитый, разделенный на перегородки, устойчивый субстратный мицелий, иногда также и воздушный. Для представителей этой группы характерно формирование спорангиев разной формы, возвышающихся над поверхностью субстрата, внутри которых образуются споры (рис. 46, В). Форма спорангиев, количество и расположение в них спор различны; споры также неодинаковой формы. Эти признаки легли в основу классификации актинопланет на роды.

У отнесенных к этой же группе представителей рода Micromonospora спорангии отсутствуют (рис. 46, В). Неподвижные одиночные споры располагаются непосредственно на гифах мицелия или на очень коротких спороносных гифах (спорофорах). Все актиномицеты, входящие в состав группы, — аэробные хе-моорганогетеротрофы, сапрофиты или факультативные паразиты. Основные места обитания: пресная вода, почва, мертвые растительные и животные остатки.

Рис. 47. Актиномицеты рода Streptomyces (А), Microbispora (Б) и Streptosporangium (В). Обозначения см. рис. 46 (по Lechevalier, Pramer, 1971)  

Группа 29. Стрептомицеты и родственные формы. Актиномицеты образуют хорошо развитый воздушный мицелий, который в процессе последующего цикла развития не распадается на фрагменты (рис. 47, А). Размножение спорами, формирующимися на концах гиф, или кусочками вегетативного мицелия. Актиномицеты, объединяемые в эту группу — облигатно аэробные хемоорганогетеротрофы. Основной род Streptomyces насчитывает около 500 видов, для которых характерно образование на воздушном мицелии прямых или спирально закрученных цепочек, состоящих из трех или более неподвижных спор. Многие стрептомицеты синтезируют антибиотики, активные против бактерий, грибов, водорослей, простейших, фагов, обладающие также противоопухолевым действием.

Группа 30. Мадуромицеты33. Аэробные актиномицеты, формирующие развитый субстратный мицелий, на котором споры никогда не формируются. Они образуются только на воздушных гифах, дифференцирующихся или в короткие цепочки спор, или в спорангии, содержащие одну или множество спор (рис. 47, Б, В). Группа недостаточно изучена и, по мнению специалистов, нуждается в значительной ревизии.

33 Madura — название провинции в Индии, где впервые был описан один из представителей этой группы.

Группа 31. Термомоноспоры и родственные формы. Представители этой группы формируют воздушный мицелий, на гифах которого образуются подвижные или неподвижные споры, одиночные или в виде цепочек. Спорангии у большинства представителей отсутствуют. Для актиномицетов типового рода Thermomonospora характерна способность расти в температурном диапазоне от 40 до 48°.

Группа 32. Термоактиномицеты. Объединяет 1 род термофильных актиномицетов. Недавние исследования обнаружили, что споры Thermoactinomyces относятся к типичным эндоспорам, и по этому признаку организм следует отнести к бациллам. На близость к последним указывают также данные анализа 16S рРНК. Однако подобно истинным актиномицетам бактерии этой группы образуют хорошо развитый мицелий и по морфологии напоминают представителей рода Thermomonospora, что в данное время позволяет рассматривать их вместе с другими актиномицетами. Все представители группы формируют хорошо развитый субстратный и воздушный мицелий. Аэробные хемоорганогетеротрофы. Основное место обитания — почвы, воды, разлагающиеся растительные остатки.

Группа 33. Другие формы актиномицетов. В последние годы описано несколько новых актиномицетов, выделенных в отдельные роды, которые помещены в эту группу, так как еще недостаточно изучены и отсутствует информация, необходимая для выявления степени их сходства с другими актиномицетами.

Глава 12. Проблема происхождения и эволюции жизни. Возникновение первичной клетки

Согласно современным представлениям жизнь есть результат эволюции материи. Взгляды на происхождение жизни, ее развитие и сущность имеют длинную историю, но обсуждение этих вопросов до недавнего времени было предметом философских размышлений. Лишь в последние десятилетия решение этих вопросов было поставлено на экспериментальную основу и ответ на многие из них получен в лаборатории.

Развитие представлении о происхождении жизни

Попытки ответить на вопрос, что такое жизнь, вероятно, следует отнести ко времени появления человека (Homo sapiens) . В самых ранних дошедших до нас памятниках культуры древнейших цивилизаций в художественной форме отразились существовавшие тогда представления о возникновении живых существ. При раскопках в Уруке, городе, существовавшем в середине IV тысячелетия до нашей эры, была обнаружена ваза, на которой изображено, как из морских волн появляются растения, над растениями располагаются животные, затем — люди, а над людьми — богиня жизни и плодородия.

Сведения о том, как различные живые существа возникают из воды и гниющих остатков, можно найти в древних китайских и индийских рукописях, об этом рассказывают египетские иероглифы и клинописи Древнего Вавилона. В Древнем Египте существовало убеждение, что лягушки, жабы, змеи и даже крокодилы рождаются из слоя ила, который остается после разливов Нила. В Древнем Китае считали, что тля возникает на молодых побегах бамбука. Большое значение при этом придавалось теплу, влаге и солнечному свету. Убеждение в спонтанном зарождении живых существ из неживых материалов было воспринято философами Древней Греции и Рима как нечто само собой разумеющееся. Первоначально вера в самозарождение не связывалась с определенным миропониманием. Самозарождение воспринимали как очевидный, постоянно наблюдаемый в природе факт. И только значительно позднее под самозарождение стали подводить определенную теоретическую основу, толкуя его с материалистических или идеалистических позиций.

Древнегреческий философ Фалес Милетский (конец VII — начало VI в. до н. э.) подходил к пониманию происхождения жизни со стихийно-материалистических позиций, считая, что жизнь есть свойство, присущее материи. Для Фалеса Милетского материальным первоначалом, из которого естественным путем возник мир, была вода. На позициях материалистического толкования самозарождения жизни стоял и другой древнегреческий философ Демокрит (460 — 370 гг. до н. э.). Согласно его теории, материя построена из атомов, мельчайших, неделимых, вечных и неизменных частиц, находящихся в движении, а жизнь возникла в результате взаимодействия сил природы, в особенности действия атомов огня на атомы влажной земли.

Противоположное идеалистическое толкование идеи самозарождения жизни связано с именем Платона (428/427 — 347 гг. до н. э.), считавшего, что сама по себе растительная и животная материя не является живой. Живой она становится только тогда, когда в нее вселяется бессмертная душа — "психея". Эта идея Платона оказалась очень жизнеспособной. Ее воспринял и Аристотель (384 — 322 гг. до н. э.), учение которого легло в основу всей средневековой научной культуры и господствовало около двух тысяч лет. В работах Аристотеля приводятся многочисленные "факты" самозарождения живых существ: растений, насекомых, червей, лягушек, мышей, некоторых морских животных. Необходимые условия для этого — наличие разлагающихся органических остатков, навоза, испорченного мяса, различных отбросов, грязи. Аристотель подвел под эти "факты" определенное теоретическое толкование, рассматривая внезапное появление живых существ как результат воздействия некоего духовного начала на безжизненную, косную материю.

В средние века идеи о возникновении живых существ из неживой материи подкреплялись новыми "фактами". Я. ван Гельмонт, голландский естествоиспытатель, известный своими исследованиями по питанию растений, предложил способ получения мышей, согласно которому, если открытый кувшин набить нижним бельем, загрязненным потом, и добавить туда некоторое количество пшеницы, то приблизительно через три недели появляется мышь, "поскольку закваска, находившаяся в белье, проникает через пшеничную шелуху и превращает пшеницу в мышь".

Развитие науки в эпоху Возрождения с ее экспериментальным подходом к изучению явлений природы поставило на повестку дня пересмотр с новых позиций идеи самозарождения Живых существ. Итальянский врач Ф. Реди (F. Redi, 1626 — 1698) решил проверить, действительно ли, как это всеми считалось, "черви" (личинки мух) зарождаются из гниющего мяса. Для этого он уложил мясо в три банки, одну из которых оставил открытой, вторую накрыл тонкой марлей, а третью — пергаментом. Все три куска мяса начали гнить, но "черви" появились только в открытой банке. Этим простым экспериментом Ф. Реди показал, что "черви" не возникли из гниющего мяса, а появились лишь там, где мухи могли откладывать яйца непосредственно на мясо. Опыты Ф. Реди впервые серьезно поколебали господствовавшую идею самозарождения макроскопических организмов.

<<< Назад Содержание Дальше >>>

medbookaide.ru