MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Гусев М. В., Минеева Л. А. - Микробиология

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
<<< Назад Содержание Дальше >>>

В представленном в этой главе материале проанализированы энергетические процессы, сформированные на первом этапе эволюции жизни на Земле. То, что брожение — наиболее примитивный способ получения энергии организмами, в настоящее время никем не ставится под сомнение. Гораздо сложнее оценить, какой путь в процессе эволюции пройден теми или иными организмами. Очевидно, что при имеющихся возможностях обмена генетической информацией в мире прокариот сохранение их в первоначальном виде маловероятно. Описание представленных в этой главе нескольких групп анаэробных эубактерий, в первую очередь, пропионовокислых бактерий и клостридиев, служит иллюстрацией этого.

Глава 14. Фотосинтез. Типы жизни, основанные на фотофосфорилировании

В предыдущей главе был рассмотрен ряд групп прокариот, относящихся к эубактериям, получающих энергию в реакциях субстратного фосфорилирования и не зависящих от молекулярного кислорода. Их предки появились на Земле, когда в ее атмосфере отсутствовал O2. Единственным источником свободной энергии, доступным первобытным организмам, была химическая энергия органических молекул, возникших в основном абиогенным путем. Увеличение численности популяций приводило к возрастанию использования органических молекул в окружающей среде, которое на определенном этапе стало превышать их накопление. В результате органические вещества постепенно исчерпывались из среды. Создавалась критическая ситуация, вызываемая нехваткой соединений, которые могли бы служить источником свободной энергии для организмов. Перед ними возникла проблема поиска новых источников углеродного питания и свободной энергии. В энергетическом плане необходимо было найти способ получения энергии за счет постоянно действующего источника. Такой источник энергии представляет собой солнечная радиация. Глобальное значение развившейся способности использовать световую энергию в том, что фотосинтез — единственный процесс, приводящий к увеличению свободной энергии на нашей планете. Таким образом, фотосинтез обязан своим "происхождением" экологическому кризису, возникшему в результате исчерпания на определенном этапе развития жизни органических ресурсов планеты.

Жизнь за счет анаэробных превращений органических субстратов привела к возникновению анаэробной формы жизни за счет света. Для этого прежде всего должны были возникнуть молекулы, поглощающие кванты света. Когда сформировались структуры для улавливания света, появилась возможность использования световой энергии. То, как эта возможность реализовывалась, доказывает наличие нескольких типов фотосинтеза, осуществляемого разными группами эубактерий, энергетический метаболизм которых полностью или частично основан на использовании энергии света. Фотосинтезирующие эубактерий представлены пурпурными и зелеными бактериями, гелиобактериями, цианобактериями51 и прохлорофитами.

51 В ботанической литературе — сине-зеленые водоросли.

Пигменты фотосинтезирующих эубактерий

Для абиогенного синтеза органических веществ в основном требовался ультрафиолет. Все известные в настоящее время фотосинтезирующие организмы используют в процессе фотосинтеза видимый и инфракрасный свет. Наиболее богатые энергией ультрафиолетовые лучи в фотосинтезе практически не используются (см. рис. 35). Это связано с фотохимическими эффектами разных частей спектра, рассмотренными ранее.

Фотосинтезирующие эубактерий обязательно содержат магнийпорфириновые пигменты — хлорофиллы. Известно больше десяти видов хлорофиллов, но все они поглощают свет видимой и инфракрасной частей спектра.

Вероятно, первыми фоторецепторами, предшественниками современных хлорофиллов, следует считать порфирины, структура которых обеспечивает поглощение умеренно энергизованных квантов света. Экспериментально показана возможность синтеза порфиринов абиогенным путем из простых веществ в условиях, имитирующих условия первобытной Земли.

Важным моментом в эволюции порфиринов явилось включение ионов металла в центр порфиринового ядра. Все порфирины, обладающие фоторецепторным действием, являются магниевыми комплексами. Порфирины, участвующие в темновом транспорте электронов (цитохромы), а также ферменты каталаза и пероксидаза содержат в центре порфиринового кольца атом железа.

Итак, способность организмов существовать за счет энергии света в первую очередь связана с наличием у них специфических фоторецепторных молекул — пигментов. Набор пигментов характерен и постоянен для определенных трупп фотосинтезирующих эубактерий. Соотношения между отдельными пигментами колеблются в зависимости от вида и условий культивирования. В целом фотосинтетические пигменты эубактерий обеспечивают поглощение света с длиной волны в области 300 — 1100 нм.

Все фотосинтетические пигменты относятся к двум химическим классам соединений: 1) пигменты, в основе которых лежит тетрапиррольная структура (хлорофиллы, фикобилипротеины); 2) пигменты, основу которых составляют длинные полиизопреноидные цепи (каротиноиды). Особенность химического строения молекул всех фотосинтетических пигментов состоит в наличии системы сопряженных двойных связей52, от количества которых зависит способность пигментов улавливать бедные энергией кванты света, а также защита каротиноидами хлорофилла от синглетного кислорода.

52 Сопряженными называются двойные связи, чередующиеся с простыми, т. e. -CH=CH-СH=CH-.

Хлорофиллы

Рис. 68. Обобщенная формула хлорофиллов. Римскими цифрами указаны пиррольные кольца. Химическая природа радикалов R1 — R7 приведена в табл. 19  

У фотосинтезирующих эубактерий известно больше десяти видов хлорофиллов (рис. 68, табл. 19). Хлорофиллы эубактерий, осуществляющих бескислородный фотосинтез (пурпурные и зеленые бактерии, гелиобактерии) получили общее название бактериохлорофиллов. Идентифицировано 6 основных видов бактериохлорофиллов: а, b, с, d, e, g53. Все пурпурные бактерии содержат какую-либо одну форму бактериохлорофилла: a или b. Небольшие различия в химическом строении приводят к существенным изменениям в спектральных свойствах этих пигментов. Пурпурные бактерии, содержащие бактериохлорофилл a, могут поглощать свет с длиной волны до 950 нм. У видов, имеющих бактериохлорофилл b, максимум поглощения в красной части спектра сдвинут в длинноволновую область больше чем на 100 нм и приходится на 1020 — 1030 нм, а граница поглощения продвинута до 1100 нм. Дальше бактериохлорофилла b не поглощает ни один известный фотосинтетический пигмент. Основными хлорофилльными пигментами зеленых бактерий являются бактериохлорофиллы с, d или e, незначительно различающиеся между собой по спектрам поглощения (табл. 19). Кроме них в клетках всех зеленых бактерий в небольшом количестве содержится бактериохлорофилл a. Наличие этих бактериохлорофиллов позволяет зеленым бактериям использовать свет с длиной волны до 840 нм. Необычный бактериохлорофилл g с максимумом поглощения 790 нм обнаружен у облигатно анаэробных фотосинтезирующих бактерий Heliobacterium chlorum и Heliobacillus mobilis, выделенных в группу гелиобактерий.

53 Бактериохлорофиллы a, b и c, по последним данным, существуют в нескольких модификациях, так как радикал R6 может быть фитолом, фарнезолом, геранил-гераниолом или другим многоатомным спиртом (табл. 19).

Эубактерии, фотосинтез которых сопровождается выделением молекулярного кислорода (цианобактерии и прохлорофиты), содержат хлорофиллы, характерные для фотосинтезирующих эукариотных организмов. У цианобактерий — это хлорофилл a, единственный вид хлорофилла, обнаруженный в этой группе; в клетках прохлорофит — хлорофиллы a и b. Присутствие этих пигментов обеспечивает поглощение света до 750 нм.

Для всех хлорофиллов характерно наличие нескольких максимумов по глощения. В клетке спектральные свойства хлорофиллов определяются нековалентными взаимодействиями молекул пигмента друг с другом, а также с липидами и белками фотосинтетических мембран.

Фикобилипротеины

Таблица 19. Различия в химическом строении хлорофиллов фотосинтезирующих эубактерий и основные максимумы их поглощения в клетке

Пигмент 

Химическая природа радикалов, указанных на рис. 68 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

Основной максимумпоглощения в клетке, нм 

Хлорофилл 

-CH=CH2 

-CH2 

-C2H5 

-CH3 

-CO-O-CH3 

фитол 

-H 

680-685 

-COH 

650-660 

Бактерио-хлорофилл 

-CO-CH3 

-CH3 

фитол илигеранил-гераниол 

830-890 

-CH3 

=CH-CH3 

1020-1030 

-CHOH-CH3 

-C2H5 -C3H7 -C4H9 

-C2H5 -CH3 

-H 

фитол,фарнезоли др. 

-CH3 

750-760 

фарнезол 

-H 

720-740 

-COH 

-C2H5 

-CH3 

710-720 

-CH=CH2 

-CH3 

=CH-CH3 

-CH3 

-CO-O-CH3 

-H 

770-790 

Фикобилипротеины — красные и синие пигменты, содержащиеся только у одной группы эубактерий — цианобактерий54. Хромофорная группа пигмента, называемая фикобилином, ковалентно связана с водорастворимым белком типа глобулина и представляет собой структуру, состоящую из четырех пиррольных колец, но не замкнутых, как в молекуле хлорофилла, а имеющих вид развернутой цепи, не содержащей металла (рис. 69). Молекулы фикобилипротеинов состоят из двух нековалентно связанных неидентичных субъединиц — a и b, к каждой из которых ковалентно присоединены хромофорные группы: фикоэритробилин или фикоцианобилин. Некоторые данные относительно строения и спектральных свойств фикобилипротеинов цианобактерий приведены в табл. 20.

34 Фикобилипротеины содержатся также у двух групп эукариот: красных и криптофитовых водорослей.

Таблица 20. Строение и спектральные свойства основных фикобилипротеинов цианобактерий

Фикобилипротеин 

Субъединичный состав мономера 

Число и тип молекул хромофоров, связанных с субъединицами* 

Состояние пигмента в клетке 

Основной максимум поглощения, нм 

Фикоэритрин 

ab 

2ФЭБ 

ЗФЭБ 

(ab)nn=1-6 

565 

Фикоцианин 

ab 

1ФЦБ 

2ФЦБ 

(ab)nn=1-6 

620 

АллофикоцианинАллофикоцианин B 

ab 

1ФЦБ1ФЦБ 

1ФЦБ1ФЦБ 

(ab)3 (ab)3 

654671 

* ФЭБ — фикоэритробилин; ФЦБ — фикоцианобилин.

Различия в спектральных свойствах фикобилипротеинов определяются аминокислотной последовательностью a- и b-полипептидов, числом и типом присоединенных к ним хромофорных групп, а также степенью агрегирования. Так, переход аллофикоцианина из мономерного состояния в гримерное сопровождается изменением максимума поглощения от 616 до 654 нм. Степень агрегирования зависит от вида и возраста культуры, а также от внешних факторов: pH, ионной силы раствора, температуры. В основе агрегирования молекул фикобилипротеинов лежат гидрофобные взаимодействия между мономерами. Значение способности фикобилипротеинов к агрегированию становится понятным при формировании ими фикобилисом — структур, в которых эти пигменты организованы в агрегаты высокого порядка.

Рис. 69. Химическая структура хромофорных групп фикоэритрина (фикоэритробилин), фикоцианина и аллофикоцианинов (фикоцианобилин). Римскими цифрами указаны пиррольные кольца (по Chapman, 1973)  

Фикобилипротеины обеспечивают в клетках цианобактерий поглощение света в области 450 — 700 нм и с высокой эффективностью (больше 90%) передают поглощенный свет на хлорофилл, при этом основное количество энергии передается на хлорофилл, связанный со II фотосистемой. Все цианобактерий содержат небольшие количества аллофикоцианина и его длинноволновой формы — аллофикоцианина B, а также значительные количества фикоцианина, одного из основных клеточных пигментов, содержание которого в условиях низкой освещенности может достигать 60% от общего уровня растворимых белков клетки. Некоторые цианобактерий содержат также второй основной фикобилипротеин — фикоэритрин. Способность синтезировать фикоэритрин может быть конститутивным свойством организма или индуцироваться в определенных условиях освещения.

Каротиноиды

К вспомогательным фотосинтетическим пигментам, которые содержат все фотосинтезирующие организмы, относятся каротиноиды, большая группа химических соединений, представляющих собой продукт конденсации остатков изопрена:

Большинство каротиноидов построено на основе конденсации 8 изопреноидных остатков. У некоторых каротиноидов полиизо- преноидная цепь открыта и не содержит циклических группировок. Такие каротиноиды называются алифатическими. У большинства на одном или обоих концах цепи расположено по ароматическому или (3-иононовому кольцу. Каротиноиды первого типа относятся к арильным, второго — к алициклическим. Выделяют также каротиноиды, не содержащие в молекуле кислорода, и кислородсодержащие каротиноиды, общее название которых ксантофиллы.

Состав каротиноидов фотосинтезирующих эубактерий разнообразен. Наряду с пигментами, одинаковыми у разных групп, для каждой из них обнаружены определенные каротиноиды или наборы последних.

Рис. 70. Структурные формулы некоторых каротиноидов фотосинтезирующих эубактерий (по Кондратьевой, 1972; Nichols, 1973)  

Наиболее разнообразен состав каротиноидных пигментов у пурпурных бактерий, из которых выделено свыше 50 каротиноидов. В клетках большинства пурпурных бактерий содержатся только алифатические каротиноиды, многие из которых принадлежат к группе ксантофиллов. У некоторых пурпурных серобактерий обнаружен арильный моноциклический каротиноид окенон, а у двух видов несерных пурпурных бактерий найдено небольшое количество (3-каротина, алициклического каротиноида, распространенного у цианобактерий и фотосинтезирующих эукариотных организмов. Структурные формулы некоторых характерных для пурпурных бактерий каротиноидов представлены на рис. 70, 2 — 5. Набор и количество отдельных каротиноидов определяют окраску пурпурных бактерий, густые суспензии которых имеют пурпурно-фиолетовый, красный, розовый, коричневый, желтый цвета.

Зеленые бактерии по составу каротиноидов отличаются от пурпурных. Основные каротиноиды зеленых серобактерий — арильные, содержащие 1 или 2 ароматических кольца, а также алициклический каротиноид g-каротин (рис. 70, 6 — 9). Иной состав каротиноидов у зеленых нитчатых бактерий. Эта группа эубактерий, цианобактерий и прохлорофиты содержат алициклические каротиноиды с одним или двумя b-иононовыми кольцами. Основной пигмент — b-каротин, составляющий иногда больше 70% общего количества каротиноидов клетки. Специфическим ксантофиллом этих групп является эхиненон, а также гликозидные производные некоторых кислородсодержащих каротиноидов типа миксоксантофилла (рис. 70, 1, 10, 11).

Каротиноидные пигменты поглощают свет в синем и зеленом участках спектра, т. е. в области длин волн 400 — 550 нм. Эти пигменты, как и хлорофиллы, локализованы в мембранах и связаны с мембранными белками без участия ковалентных связей. Функции каротиноидов фотосинтезирующих эубактерий многообразны. В качестве вспомогательных фотосинтетических пигментов каротиноиды поглощают кванты света в коротковолновой области спектра, которые затем передаются на хлорофилл. У цианобактерий энергия света, поглощенная каротиноидами, поступает в основном в I фотосистему. Эффективность передачи энергии для разных каротиноидов колеблется от 30 до 90%. Известно участие каротиноидов в осуществлении реакций фототаксиса, а также в защите клетки от токсических эффектов синглетного кислорода.

Спектры поглощения клеток разных групп фотосинтезирующих эубактерий

Пигментные наборы фотосинтезирующих эубактерий позволяют им использовать весь диапазон длин волн падающей на Землю солнечной энергии (рис. 71; см. рис. 35). Обращает внимание большое различие в спектрах поглощения у представителей разных групп фотосинтезирующих организмов и прежде всего существенные сдвиги в максимумах поглощения хлорофиллов в красной области спектра. Несомненно экологическое значение этого явления, позволяющего избегать конкуренции за свет между разными группами фотосинтезирующих организмов. Что же касается эволюции спектров поглощения хлорофиллов, то очевидна тенденция к перемещению в более коротковолновую часть спектра с более высоким энергетическим уровнем.

Строение фотосинтетического аппарата эубактерий

Рис. 71. Спектры поглощения клеток эукариотной зеленой водоросли Chlorella pyrenoidosa и представителей разных групп фотосинтезирующих эубактерий: цианобактерии (Anacystis nidulans, Synechococcus), зеленых (Chlorobium limicola, Prosthecochloris aestuarii) и пурпурных (Chromatium okenii, Rhodopseudomonas viridis) бактерий  

Фотосинтетический аппарат основных групп эубактерий организован по-разному. Это проявляется как в химической природе составляющих его компонентов (набор пигментов, состав переносчиков электронов), так и в структурной организации в клетке. Фотосинтетический аппарат состоит из трех основных компонентов: 1) светособирающих пигментов, поглощающих энергию света и передающих ее в реакционные центры; 2) фотохимических реакционных центров, где происходит трансформация электромагнитной формы энергии в химическую; 3) фотосинтетических электронтранспортных систем, обеспечивающих перенос электронов, сопряженный с запасанием энергии в молекулах АТФ. В фотохимической реакции участвуют, как правило, хлорофиллы или бактериохлорофиллы a в модифицированной форме. Эти же виды хлорофиллов, наряду с другими, а также пигментами иных типов (фикобилипротеины, каротиноиды) выполняют функцию антенны. У некоторых пурпурных бактерий, содержащих только бактериохлорофилл b, он выполняет обе функции. У недавно описанных гелиобактерий бактериохлорофилл g также служит светособирающим пигментом и входит в состав реакционного центра (табл. 21).

<<< Назад Содержание Дальше >>>

medbookaide.ru