MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

? - Клиническая физиология сердца

1 2 3 4 5 6 7 8 9 10 11 12 13
<<< Назад Содержание Дальше >>>

В физиологических условиях объем наполнения LV кровью в фазы быстрого и медленного пассивного наполнения значительно больше, чем в систолу предсердий. Он предопределяется активным изоволюмическим расслаблением миокарда, в основе которого упомянутое обеспечиваемое ATP расхождение актомиозиновых нитей через удаление от их активных мест по быстрым каналам ионов кальция с уменьшением активных деформаций кардиомиоцитов. Важно обратить внимание, что такие внешние для рассматриваемого явления факторы, как катехоламины, усиливают и ускоряют, внутриклеточный кальций ослабляет и замедляет, рост частоты сердечных сокращений (HR) ускоряет и ослабляет, рост постнагрузки замедляет и усиливает, рост преднагрузки замедляет и ослабляет активное изоволюмическое расслабление. Они - прямое свидетельство, что точкой приложения большинства фармакотерапевтических влияний на сердце является именно диастола, этот ее наиболее важный временной промежуток. Известный факт - симметричность процессов изоволюмического расслабления и сокращения [10]. Но не второе определяет первое. Активное изоволюмическое раслабление есть основа механизма Франка-Старлинга. Потому что механизм этот так и понимается - чем больше диастолическое наполнение, тем больше систола. Если оно совершается в пределах физиологических изменений актомиозинового перекрытия.

Диастола порождает систолу и управляет систолой через разные механизмы. Один из наиболее изученных - продолжительность и фазовая структура диастолы. Хорошо известный механизм Франка -Старлинга тому пример [42, 43]. Чем дольше в физиологическом диапазоне изменений диастола, тем она совершеннее. Дольше диастола - дольше период изоволюмического расслабления. Дольше этот период - более полное актомиозиновое расхождение, большее диастолическое наполнение сердца. Большее диастолическое наполнение - больше сила сердечных сокращений и больше ударный объем. Более продолжительная диастола является необходимым условием большего диастолическое наполнение LV, его конечнодиастолического объема. Чем больше конечнодиастолическое наполнение LV, тем эффективниее и систола, и период изоволюмического расслабления диастолы.

Детерминанты качественной диастолы - качественные же кардиомиоциты. Кардиомиоциты представляют собой высокоспециализированные клетки, утратившие почти полностью функции жизнеобеспечения (функции-домохозяйки). Эти функции для них выполняются клетками опорнотрофического (соединительнотканного) остова, в составе которого также кровеносные и лимфатические сосуды, волокна, основное вещество, нервные элементы. Клетки опорнотрофического остова представлены фиброцитами, фибробластами, эндотелиальными, гладкомышечными, жировыми, плазматическими, тучными и др. клеточными элементами. В физиологических условиях их число невелико. Но они обеспечивают не только функциональную активность кардиомиоцитов, но и восстановительные процессы в волокнистом каркасе, без которого диастола как организованный процесс, непредставима. Пролиферативный пул соединительнотканных клеток имеет гематогенное происхождение. Функционирование опорнотрофического остова определяется микроциркуляцией, NGR, эффективным иммунным контролем генетического гомеостазиса, другими механизмами. Нейрогуморальные влияния на собственно кардиомиоциты и клетки опорнотрофического остова, как и миокард и сердце в целом, реализуются через рецепторы, числом, активностью, разнообразием и соотношением которых определяется, каким образом сердце отреагирует на поступающую регуляторную информацию. Аксиома, не требующая доказательств, - нейрогуморальные влияния далеко не ограничиваются воздействием на биомеханику сердца, но определяют его трофическую, пластическую и другие, связанные с жизнеобеспечением, функции. Нет сомнений, в этих функциях приоритет принадлежит диастоле. Связь сердца с эндокринной регуляцией, обменом тиреоидных гормонов, натрийуретическим пептидом, ренин-ангиотензин-альдостероновой системой, кининами, простагландинами, бета- и альфарецепцией, вторичными мессенджерами, цитокинами, др. должна рассматриваться прежде всего именно в плоскости диастолы.

Носители пассивных, вне сокращения, вязкоупругие свойства миокарда - опорнотрофический остов, а также актомиозиновые мостики, имеющиеся в определенном количестве и в пассивной мышце. Состояние опорнотрофического остова во многом определяет функциональные, в том числе механические, свойства сердечной мышцы. Опорная функция остова обусловлена наличием в нем прочных волокон, формирующих волоконный каркас сердца. Это коллагеновые, эластические и ретикулиновые волокна. Они ориентированы под углом к мышечным волокнам. В систолу волоконнный каркас, деформируясь, накапливает значительную потенциальную энергию сжатия миокарда, за счет освобождения которой в фазу быстрого наполнения диастолы изменения объема LV опережают поступающие в него из LA объемы крови и она как бы "засасывается" им. Механизм работает эффективно только в условиях сохранения архитектуры и свойств волоконного каркаса. Вклад разных носителей (опорнотрофического остова и нерасщепленных актомиозиновых мостиков) в вязкоупругие свойства миокарда даже в физиологических условиях зависит от множества факторов, таких, как возраст, состояние миокарда, энергетика мышечного сокращения и управление, др. Вязкоупругие свойства миокарда усиливаются не только при дезорганизации и перестройке опорнотрофического остова, в особенности при воспалительных и склеротических процессах, но и за счет "мостикового" компонента при неполном диастолическом расслаблении миокарда любой природы (ишемическая контрактура, гипертрофия, др.) [7, 28, 38]. Уделяем достаточное внимание сохранению вязкоупругих свойств миокарда?

Формируемый в диастолу в фазы пассивного наполнения и систолы предсердий конечнодиастолический объем крови LV есть запасенная LA в систолу сердца и транзитная через него из легочных вен в LV во время фазы быстрого пассивного наполнения кровь. В физиологических условиях до ? объема перемещаемой в LV крови попадает в него из легочных вен, (85 - 60)% всей крови в LV поступает в фазы пассивного наполнения и (15 - 30)% - в систолу предсердий. С ростом HR возрастает вклад в диастолическое наполнение LV систолы предсердий (если таковая есть - мерцательная аритмия). Наибольшее давление в LV развивается к концу диастолы и носит название конечнодиастолического. В физиологических условиях оно не превышает 12 мм рт. ст. Источник поступающих в диастолу в LV потоков крови - не только LA и легочные вены. В период изоволюмической релаксации часть ее возвращается в LV из аорты в силу конечных времен закрытия аортального клапана. В физиологических условиях эти (регургитантные) объемы крови несущественны. Они никак не влияют на диастолу и порождаемую нею систолу [].

Сердце, диастола, естественно, тоже - фунциональные элементы единого неделимого кровообращения. Циклическая организация сердечной деятельности и циклиническая организация кровообращения - взаимоуправляемые процессы. Интерфейсные функции для сердца здесь во многом положены именно на диастолу, "напичканную" разного рода рецепторами растяжения и передающими информацию с камеры на камеру сердца и сосудистые контуры (легких и большого круга кровообращения) регуляции.

В биомеханике сердца важны не только реакция на стресс, но и восстановительные процессы, которые снова определяются именно диастолой. Диастола, получается, детерминирует и текущее с изменениями в переходных (стресс) процессах, и долгосрочное функциональное и структурное, прежде всего, состояние сердца. В диастоле все ресурсы сердца и наиболее важная информация об его состоянии. Она - "золотой ключик" в клинической диагностике сердца.

Оцениваем диастолу по настоящему?

Глава 2 Функциональные показатели

Функциональные исследования - фундамент клинической физиологии сердца. Они поставляют значительное количество показателей о его состоянии, кровообращении. Малая часть их представлена в нижеследующих таблицах главы, но и они далеко не все учитываются врачем одновременно. По разным обстоятельствам. Более того, квалифицированный врач использует разумным образом отобранное ограниченное число показателей, диктуемое ситуацией и некоторыми общими принципами оптимального менеджмента пациента. Не все методы в конкретной ситуации доступны. Предпочтение имеют неинвазивные.

Заметим снова, одни и те же показатели могут быть получены разными методами. Геометрия сердца доступна томографическим методам, фазовая структура сердечного цикла и того более, - семействам методов, вскрывающим разные стороны физиологии кровообращения. При выборе метода учитывается множество факторов, но всегда результат должен быть максимальным при минимальной цене (снова оптимизация). Функциональные показатели - производные от гемодинамических, биомеханических, электрофизиологических и иных функций. Они есть значения этих функций, взятые в конкретные (опорные) моменты (реперы) сердечного цикла. Наиболее часто - это границы фаз и периодов цикла. Цель книги - интерпретация, но не сами показатели. Глава поэтому больше имеет демонстративное в поставленной задаче значение.

2.1 Показатели фазовой структуры сердечного цикла

Каждый сердечный цикл состоит из систолы, отвечающей сокращению миокарда желудочков, и диастолы - его расслаблению. Цикловая биомеханика не только сердца, но ССС "привязывается" к цикловой структуре желудочков сердца.

Систола желудочков:

* период изоволюмического сокращения (ICP) o фаза асинхронного сокращения (ACF) o фаза изоволюмического сокращения (ICF)

* период изгнания (EP) o фаза быстрого изгнания (QEF) o фаза медленного изгнания (SEF)

Диастола желудочков:

* период изоволюмического расслабления (IRF)

* период диастолического наполнения:

* период пассивного наполнения (PFP):

o фаза быстрого наполнения (QFF) o фаза медленного наполнения (SFF)

* систола предсердий (ASF).

Результирующие временные характеристики сердечного цикла - длительность (HT) и обратная к ней величина - частота сердечных сокращений (HR). Единица измерения цикловых временных характеристик - ms, и только HR - 1/min. Естественно фазовый анализ биомеханики сердца дополнять измерением на ECG длины PQ-сегмента, как меры продолжительности атриовентрикулярного проведения, а также - QT и TQ, как мер электрических систолы и диастолы. QT измеренный обычно сравнивают с должным (метод Базета).

Показатели фазовой структуры сердечного цикла сведены в табл. 2.1.1.

На сегодня наиболее полный и одновременно удобный метод определения цикловой организации сердечного ритма - одномерная эхокардиографическая регистрация движения створок митрального и аортального клапанов, синхронизированная, однако, с электрокардиографической записью.

Таблица 2.1.1 Показатели фазовой структуры сердечного цикла

(...)

2.2 Функциональные показатели левого сердца

В клинике, если не считать специализированных подразделений, при изучении сердца большее внимание уделяется функциональному состоянию LV. В повседневной практике именно с этими проблемами наиболее часто встречается врач. LV в значительной мере определяет, а следовательно, и представляет системную гемодинамику. Далее за ним следует LA. И только затем правые камеры. Если, конечно, речь не касается врожденных пороков и/или правое сердце не вовлекается серьезным образом в патологический процесс. Естественно определять одинаковые по смыслу гемодинамические и биомеханические показатели разных камер сердца и естественно поэтому остановиться на таковых LV.

Наиболее важные гемодинамические и биомеханические функции LV - давление и обьем крови, активные деформации и напряжения в миокарде. Чтобы судить о величине давления и его циклических изменениях, достаточно знать его в характерные моменты сердечного цикла. Это давление в начале периода изгнания систолы (BEVP), максимальное за период изгнания систолы (SEVP), в конце периода изгнания систолы (EEVP), среднее за период изгнания систолы (MEVP), конечно-диастолическое (EDVP). В практической работе наиболее часто используют конечнодиастолическое и максимальное систолическое давление. По первому судят о преднагрузке на сердце, по второму - о гемодинамических потенциях LV. Помимо самого давления анализу подвергают и ее первую производную. Модули экстремумов (максимума и минимума) производной называются индексами сократимости (IC) и релаксации (IR). Используются также нормированные индексы и постоянные времен сократимости и релаксации. Нормированный индекс сократимости (NIC) - индекс, деленный на давление в конце периода изоволюмического сокращения и умноженный на продолжительность этого периода. Соответственно, нормированный индекс релаксации (NIR) - индекс, деленный на давление в начале периода изоволюмической релаксации и умноженный на продолжительность этого периода. Нормированные индексы отражают неравномерность процессов изоволюмических сокращения и расслабления (релаксации). Постоянные времен изоволюмических сокращения (TC) и релаксации (TR) LV - времена, на протяжении которых, соответственно, изоволюмическое сокращение и изоволюмическая релаксация совершаются ровно наполовину.

Значения обьема крови LV в конце диастолы и систолы называются, соответственно, конечно-систолическим (ESV) и конечно-диастолическим (EDV). Разность между ними представляет собой ударный объем (SV). В случае порока аортального и (или) митрального клапана, ударный обьем представляют обьемом выброса (SFV) и обьемом регургитации (RV). Естественно выполнение условия SV=SFV+RV. Точное значение SFV есть интеграл по времени периода изгнания от обьемной скорости кровотока через аортальный клапан. Номированный на площаль поверности тела SV называют ударным индексом (SI). Используют также нормирование ударного на конечно-диастолический обьем LV. Этот показатель выражают в процентах и называют фракцией изгнания (EF). Если SV умножить на HR, получится обьем крови LV за одну минуту - минутный объем крови (MV).

Деление его на площадь поверхности тела дает нормированный показатель - сердечный индекс (CI). По аналогии с SI и EF целесообразно построить аналог CI в виде EF, умноженной на HR. Ее можно назвать минутной фракцией (MF).

Дополнительную информацию дает анализ фазовой петли "обьем-давление" крови в LV. Площадь, ограниченная петлей, есть ударная работа сердца (SW) по изгнанию крови в сосуды BCC.

Давление и обьем крови в камерах сердца определяется либо прямыми (инвазивными) изменениями, либо ультразвуковыми методами в дополнении с математическим моделированием.

Эхокардиография в числе других томографических методов дополнительно позволяет определить толщину стенок сердца, например, в конце диастолы (DWT) и (SWT), их массу (MM). Так как масса стенок сердца существенно определяется конституциональными особенностями, вводят понятие нормированной массы, отнесенной к площади поверхности тела (NMM). Измерениям подлежат систолические и диастолические размеры выносящих трактов и клапанного аппарата желудочков, аорты и легочного ствола.

О диастолической функции LV помимо давления и обьема судят по показателям трансмитрального кровотока - наиболее употребимы скрости Е, А, отношение Е/А). Из других показателей диастолы SLV и SVVM необходимо обязательно "привязывать" к ее фазовым процессам. В естественных условиях они максимальны в фазу быстрого наполнения (QDF). При повышении диастолической жесткости миокарда LV - в систолу предсердий (AS). Митральную регургитацию характеризуют максимальная линейная (SRLVM), максимальная объемная (SRVVM), средняя линейная (MRLVM) и средняя объемная (MRVVM) скорости. Важной количественной мерой регургитации является ее обьем (LFR).

Активные деформации (степень актомиозинового сокращения) оценивают в конце периодов изоволюмического сокращения (ССL) изгнания систолы (ECL). Показателями, отражающими напряженно-деформированное состояние LV, являются максимальные (MCS), конечнодиастолические (EDCS) и конечносистолические эндокардиальные тангенциальные ("окружные") напряжения (ESCS), конечнодиастолические (EDCD) и конечносистолические эндокардиальные тангенциальные ("окружные") деформации (ESCD). Используют также показатели диастолической (DMR) и систолической (SMR) ригидности миокарда LV.

Гемодинамические и биомеханические показатели левого сердца сведены в табл. 2.2.1.

Таблица 2.2.1 Гемодинамические и биомеханические показатели левого сердца*

(...)

2.3 Функциональные показатели большого круга кровообращения

Наиболее доступным (сфигмоманометрия) для измерений является артериальное (кровяное) давление (BP). Различают систолическое (SBP), диастолическое (DBP), среднее (MBP) и пульсовое (PP) давление.

Ранее инвазивные, а сегодня ультразвуковые методы позволяют измерять скорость кровотока, оценивать давление и другие гемодинамические показатели в самых разных сосудах. Их дополнение методами математического моделирования позволяет расчитывать биомеханические показатели. Измеряются максимальныя линейная (SLV) и объемная (SVV), средние линейная (MLV) и объемная (MVV) скорости кровотока в аорте, максимальные линейная (SRLV) и объемная (SRVV), средние линейная (MRLV) и объемная (MRVV) скорости регургитации. Важной количественной мерой регургитации является ее обьем (АRV).

Импедансными методами, по данным ультразвукового исследования биомеханики сердца и крупных артериальных стволов в дополнении с методами математического моделирования рассчитывают периферическое сопротивление (PR), нормированное (на площадь поверхности тела) периферическое сопротивление (NPR), импеданс (IAS) - сопротивление BCC пульсовому распространению давления крови и жесткость стенки аорты (AWR).

Гемодинамические и биомеханические показатели большого круга кровообращения сведены в табл. 2.3.1

Таблица 2.3.1

Гемодинамические и биомеханические показатели большого круга кровообращения

Показатель

Формула

Размерность

Название систолическое артериальное давление диастолическое артериальное давление

(SPA+DPA)/2 среднее артериальное давление mm Hg*s/ml периферическое сопротивление kPa*s/ml импеданс max(U) максимальная средняя по сечению линейная скорость кровотока в аорте max(U*f) максимальная объемная скорость кровотока в аорте средняя по сечению и за период изгнания линейная скорость кровотока в аорте средняя за период изгнания объемная скорость кровотока в аорте max(U) максимальная линейная скорость регургитации крови из аорты max(U*f) максимальная объемная скорость регургитации крови из аорты средняя по сечению и за время регургитации линейная скорость регургитации крови из аорты средняя за время регургитации объемная скорость регургитации крови из аорты диаметр устья аорты int(pi*r*r* *sqr(2*(Q-P)/p)* *sqr3((1+v)2))dt обьем регургитации крови из аорты в LV

*) Q, P, U, V, T, f - являются текущими для указанного промежутка или момента времени t; D(x) - конечное приращение величины x за промежуток времени T; LD(x) - конечное приращение логарифма величины x за промежуток времени T; int()dt - интеграл; sqr() - квадратный корень; sqr3() - кубический корень; F - площадь поверхности тела; f - площадь отверстия для которого вычисляется объемная скорость; r - радиус отверстия; p - плотность крови; рi - число пи; v - текущий объем полости.

2.4 Показатели вариабельности сердечного ритма (hrV)

В практическом применении выделяют пять групп показателей - пространственно -временные, статистические, пространственно-спектральные, теории хаоса, полученные в результате математического моделирования автономной нервной регуляции биомеханикой сердца. Пространственно-временные - средняя длина RR-интервалов, средняя HR, максимальная амплитуда колебаний длительности RR-интервалов, различия в средней длине "дневных" и "ночных" RR-интервалов, а также - в длине RR-интервалов при различных формах физического, ментального или фармакологического стресса.

<<< Назад Содержание Дальше >>>

medbookaide.ru