MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

? - Клиническая физиология сердца

1 2 3 4 5 6 7 8 9 10 11 12 13
<<< Назад Содержание Дальше >>>

Уменьшение давления в мелких артериальных ветвях и микрососудах связано с диссипацией энергии, которая является следствием периферического сопротивления (PR) артериальных сосудов. Его определяют отношением среднего артериального давления к SV LV. Величина PR в физиологических условиях в покое у человека составляет (900 - 2500) дин.с/см (0,7 - 1,9 мм рт. ст. с/см ). Чем выше BP при неизменном PR, тем больше расход крови. Благодаря упругости сосудов величина давления в них влияет на объемную скорость кровотока, изменяя просвет сосудов, и, следовательно, PR.

Мерой жесткости стенок кровеносных сосудов является отношение приростов давления и объема, которое составляет у человека 700 - 3500 дин/см (0,5 - 2,5 мм рт. ст./см ). Жесткость стенки аорты определяется ее эластическим каркасом, артерий - эластическим каркасом и биоупругими свойствами гладкомышечных клеток. Последние обладают характерными для кардиомиоцитов свойствами возбудимости, сократимости, автоматизма и этим поддерживают тонус артериального русла на необходимом для обеспечения системного кровообращения уровне. Жесткость артериальных сосудов по мере их разветвления возрастает.

В физиологических условиях кровоток в сосудах ламинарный. При физической и эмоциональной нагрузке в области устья аорты он может стать турбулентным. Линейная скорость кровотока в аорте, как и давление, подвержена колебаниям. В начале периода изгнания после открытия аортального клапана она резко возрастает и достигает максимума примерно через 0,1 с. Пик максимальной скорости наступает раньше пика пульсового давления. К концу периода изгнания скорость кровотока в аорте падает до нуля. От начала периода изоволюмической релаксации и до закрытия аортального клапана наблюдается кратковременный обратный ток крови в LV. На кривой скорости в этот момент регистрируется дикротический зубец. Максимальная скорость кровотока в начальной части аорты у здорового человека в состоянии покоя составляет (130-150) см/с. По мере удаления от сердца она снижается и на уровне бедренной артерии не превышает 100 см/с.

На движение крови по кровеносным сосудам влияют ее реологические свойства. В реологических свойствах крови среди форменных элементов особое значение принадлежит лишь эритроцитам, вклад которых в их общее количество на три порядка больше всех остальных. Реологические свойства крови имеют следствием потерю энергии при движении по сосудам, однако у здоровых потери в артериальном русле малы и возрастают лишь в микроциркуляторном русле.

Кровоток в артериях большого круга организован так, чтобы на эффективном уровне поддерживалось течение в микроциркуляторном русле, где осуществляется обмен крови с жидкой фазой кровоснабжаемых тканей.

Венозные сосуды помимо функции возврата крови от микроциркуляторного русла к сердцу обеспечивают также ее депонирование, чем изменяют преднагрузку. При физической нагрузке благодаря развитой клапанной системе вены конечностей выполняют и функцию насоса, способствуя более быстрому возврату крови к сердцу и улучшению кровообращения. Колебания давления в венах значительно более высоки, чем в артериях.

Кровоток в сосудах малого круга кровообращения качественно соответствует сосудов большого, но характеризуется более низкими величинами и уровнями колебаний АД, ПС и жесткости сосудистой стенки. Давление крови в легочной артерии в физиологических условиях в систолу и диастолу в пять раз меньше, чем в аорте. В легочных венах давление составляет (6-9) мм рт. ст. Периферическое сопротивление малого круга в семь раз меньше, чем большого. Малый круг кровообращения, также как и большой, обладает способностью депонирования крови. Этот механизм имеет значение не только для регуляции преднагрузки на левые предсердие и желудочек, но и для синхронизации объемных потоков крови в системе кровообращения.

1.2.3 Регуляция кровообращения

Условно выделяют вне- и внутрисердечный контуры регуляции. Первый представлен симпатическими и парасимпатическими нервами, второй - внутрисердечным рефлекторным кольцом. Внесердечный отдел осуществляет регуляцию сердца в соответствие с запросами организма, внутрисердечный координирует деятельность его камер, обеспечивая наряду с другими механизмами его функциональную целостность [31, 40, 58].

Влияние симпатических и парасимпатических нервов на биомеханику сердца в некоторой мере является антагонистическим. Активация симпатических нервов повышает, парасимпатических - снижает скорость проведения импульсов по проводящей системе, сократимость миокарда предсердий и желудочков, HR. Деятельность симпатических и парасимпатических нервов координируется на различных уровнях регуляции организма - от сосудодвигательного центра головного мозга до нервных окончаний в сердце, где они контактируют друг с другом. Информация о динамике активных и пассивных деформаций миокарда предсердий и желудочков используется системами управления через расположенные в стенках камер механорецепторы. Одни рецепторы реагируют на сжатие, другие - на растяжение стенок. Благодаря этому обеспечивается избирательность информации о соответствующих фазах сердечного цикла и ее надежность. В предсердиях рецепторов больше, чем в желудочках. Для возникновения рефлекса с механорецепторов важны как скорость изменения объемов и давления в камерах сердца, так и сами их значения. Информация, поступающая с механорецепторов, обрабатывается в центрах вегетативной регуляции и используется для образования посылаемых к сердцу управляющих сигналов. Изменение частоты и силы сердечных сокращений меняет гемодинамические эффекты сердца и тем самым - состояние кровообращения в целом.

Гуморальное звено регуляции - синтезируемые специализированными органами, тканями и клетками биологически активные вещества, поставляемые к миокарду жидкими средами, включая кровоток и межклеточную ультрациркуляцию. Основная масса этих субстанций синтезируется в мозговом веществе надпочечников - катехоламины. Их наиболее изученные представители - норадреналин и адреналин. Ряд активных веществ синтезируется непосредственно в ткани сердца - предсердный натрийуретический гормон, компоненты ренинангиотензинальдостероновой системы, цитокины, др. Они участвуют в регуляции не только деятельности сердца, но всей системы кровообращения.

Нейрогуморальная регуляция (NGR) сосудов осуществляется теми же системами и механизмами, что и сердца. Речь идет о единой для кровообращения системе регуляции. В стенках кровеносных сосудов, как и в стенке сердца, расположены механорецепторы, воспринимающие изменения их геометрии и передающие к регуляторным центрам информацию об их текущем состоянии. Нервные механизмы связывают кровеносные сосуды разного уровня ветвления, чем координируется их деятельность в целом. Например, изменение тонуса артериальных сосудов, формирующего PR крови, происходит под действием информации с рецепторов, расположенных в начальных отделах аорты. Эффективность перфузии тканей определяется SV, HR, PR и производным от них BP. Как и SV и HR, PR и BP регулируются нейрогуморальными системами. Точкой приложения влияний этих систем является тонус артерий эластомышечного и мышечного типа. Гуморальные системы выступают инструментом долговременного и нервные - немедленного управления сосудистым тонусом. Нервные влияния осуществляются через рецепторы миокарда желудочков, предсердий, узлов проводящей системы и гладких мышц кровеносных сосудов. Афферентные волокна рефлекторной дуги, регулирующей артериальное давление, берут начало от барорецепторов миокарда, дуги аорты и каротидного синуса. Афферентные волокна языкоглоточного и блуждающего нервов ведут к центральным вегетативным звеньям продолговатого мозга. Симпатические и парасимпатические ядра через синапсы связаны как с эффективными звеньями рефлекторной дуги, так и корой головного мозга и ядрами гипоталамуса, контролирующими гормональную секрецию через гипофиз.

Регуляция BP осуществляется по механизмам прямой и обратной связи. Сенсорами являются барорецепторы. При падении BP сосуды мышечного типа сокращаются, чем повышается PR и возрастает посленагрузка на сердце. В итоге возрастает сила сердечных сокращений. Одновременно компенсаторно падает HR. Выброс гормонов мозгового вещества надпочечников, антидиуретического и адренокортикотропного гормонов, ренина и альдостерона имеет следствием дальнейшее, но более стойкое повышение BP. При повышенном BP описанные изменения происходят в обратном направлении.

Наиболее сильное влияние на биомеханику сердца оказывает та часть регуляции, которая отвечает ANS. Она управляет функциями иннервируемых ею органов и регулирует метаболические пути в организме.

Нелинейность функционирования ANS, наличие обратных связей и сложная фрактальная организация передачи импульсов деполяризации от источника сердечного ритма до сократительного миокарда обуславливают изменчивость (вариабельность) сердечного ритма (HRV) [2, 3]. Гуморальное, симпатическое и парасимпатическое звенья регуляции "концентрируются" в разных частотных доменах [32, 56]. Высшие вегетативные центры (коры больших полушарий) осуществляет функцию вегетосоматической и вегетомотивационной интеграции. Гипоталамус, вегетативные центры ствола головного и спинного мозга контролируют безусловно- и условнорефлекторную регуляцию дыхания, кровообращения, метаболических путей, и т.п. Через высшие вегетативные центры системы нейрогуморальной регуляции взаимодействуют со средой. Сердце -ядро концентрации этих взаимодействий [62].

В силу этих причин HRV отражает не биомеханику сердца, но состояние регуляторных систем и процессов. Этим же объясняется обнаруженная на этапе становления клинических приложений HRV прямая и независимая от других факторов ее связь ВСР со смертностью от острого инфаркта миокарда.

Опосредованность HRV нейрогуморальными механизмами удалось четко показать, когда к ее изучению были приложены методы спектрального анализа. Эти методы позволили выделить четыре спектральные зоны (области, домена), две из которых, высокочастотная и низкочастотная, связаны, соответственно, в большей мере с парасимпатической регуляцией и состоянием симпато-парасимпатического баланса, две другие - с разными уровнями гуморальной регуляции [31, 47]. Подчиненность дыхательного центра корковым функциям в силу его влияний на ядра блуждающего нерва опосредует прямые центральные воздействия на сердечный спектр. В чистом виде выделить и оценить вклад разных звеньев регуляции удается только с использованием математического моделирования. Заинтересовавшихся приглашаем к работам [31, 51]. Системы регуляции и органы-мишени потому, сердце не есть исключение, подвержены так называемым околосуточным или циркадианным колебаниям. Их хорошо известным проявлением выступает суточная периодика HR. В физиологических условиях в дневной время HR выше и в ночное - ниже, что связывают с преобладанием в первом случае симпатической и во втором - парасимпатической активности. Характер это периодики при патологических состояниях может существенным образом нарушаться [9, 13]. Интересно, что периодика HR может сохраняться даже при мерцательной аритмии, когда, казалось, синусовый узел выходит из под непосредственного контроля ANS.

1.2.4 Механизмы реакций системы кровообращения на стресс

Система кровообращения всеми компартментами, но не сердцем только, живо откликается на стресс. Наиболее изучены реакции, реализуемые суперпозицией ограниченного числа механизмов. Эти механизмы влияют на структуры, порождающие активные деформации кардиомиоцитов. К ним относятся пред-, посленагрузка, сократимость, хронотропия.

Реакция сердца на изменения преднагрузки - гетерометрическая регуляция - осуществляется в соответствии с законом Франка-Старлинга [63]. Смысл его в том, что повышение диастолического наполнения камеры сердца кровью влечет увеличение силы сокращений миокарда ее стенок, повышение УО, диастолического и систолического давления. Закон Франка-Старлинга проявляется уже на уровне отдельного кардиомиоцита. Если выделить кардиомиоцит и подвергнуть растяжению, величина и сила его сокращения будут тем большими, чем большим было растяжение. Важно, чтобы исходное растяжение не нарушало естественных связей между актомиозиновыми комплексами кардимиоцитов. С перерастяжением миокарда (дилятация) связи убывают и сила сокращения падает. Гетерометрическая регуляция проявляется не только увеличением силы сердечных сокращений, но влиянием и на скорость сокращений сердечной мышцы. В физиологических условиях преднагрузка - составное звено реакций сердца на стресс. Примерами патологических состояний, приводящих к изменению преднагрузки, могут быть системные нарушения кровообращения, заболевания клапанного аппарата, др. При стенозе левого атриовентрикулярного отверстия преднагрузка на LV снижается, при недостаточности - увеличивается. В целостном организме этот вид регуляции не проявляется полностью, потому что взаимодействует с другими упомянутыми механизмами. Повышение притока крови к предсердиям обуславливает увеличение не только силы, но и частоты сокращений. Последнее приводит часто к существенной редукции гетерометрической регуляции (рефлекс Бейнбриджа).

Реакция сердца на изменение посленагрузки - гомеометрическая регуляция - другой механизм управления насосной функцией сердца. Посленагрузку идентифицируют с увеличением сопротивления артериального русла, вынуждающим сердце развивать более высокие усилия для обеспечения того же SV. Рост посленагрузки обуславливают жесткость артерий, PR и другие изменения сосудов в период изгнания, требующие увеличения силы сердечных сокращений. Посленагрузка может возрастать по отношению к отдельным камерам сердца, сочетаясь со снижением к другим. Она не приводит к усилению диастолического растяжения кардиомиоцитов и сила сердечных сокращений при ней не возрастает. Следствием повышения посленагрузки является снижение SV. Если он падает чрезмерно, включаются механизмы повышения преднагрузки. В результате SV восстанавливается. Поддержание МV достигается и за счет HR. В физиологических условиях повышение посленагрузки наблюдается при физическом и эмоциональном стрессе, причем она быстро реагирует на изменившиеся условия функционирования сердца. При патологических состояниях изменение посленагрузки носит стойкий характер, так как вызывается не только функциональными, но и структурными искажениями. При стабильной артериальной гипертензии ее повышение связано с увеличением жесткости и PR артерий за счет гипертонуса и гипертрофии, а в последующем - и склеротических изменений стенок.

Под хронотропией понимают зависимость силы сердечных сокращений от их частоты. Основой хроноинотропии, как пред- и посленагрузки, служат наблюдаемые при вариациях HR изменения механизмов, обеспечивающих актомиозиновое взаимодействие и, в итоге, активные деформации миокарда. Хроноинотропия также является одним из фундаментальных механизмов регуляции сердечной деятельности в физиологических условиях и при патологических состояниях. Повышение и снижение силы сердечных сокращений в зависимости от HR происходит ступенчато - лестницы Боудича и Вудвортса, соответственно.

Изменения сократимости миокарда камер сердца связаны не только с внешними факторами (преднагрузка, посленагрузка, хроноинотропия), но и c механизмами, лежащими в основе активных деформаций, собственно инотропии миокарда. К ним можно отнести количество кальциевых каналов, скорость перемещения ионов кальция по каналам, кальций опосредованное взаимодействие нитей актина и миозина, энергетическое обеспечение актомиозинового взаимодействия, воздействие лекарств, патологические нарушения функций и структуры этих механизмов, др. Изменение сократимости миокарда за счет этих механизмов приводит к смене реакций сердца на пред-, посленагрузку и хронотропию. Им принадлежит важная роль как в сердечной компенсации, так и декомпенсации.

Пред-, посленагрузка, сократимость, хронотропия - не примат сердца или кровообращения как такового. Они определяются нейрогуморальными влияниями на кровообращение, самой организацией и текущим функциональным состоянием регуляторных систем. Этим объясняется исключительная индивидуальность и физиологии кровообращения, в широком смысле, до реакций на события жизни, и его перестройки при патологических состояниях [20].

Чтобы лучше понять эту индивидуальность и доверять меньше работам, в которых выстраиваются слишком уж вылизанные гипотезы, основанные на лжеидее о подчинении индивидуального кровообращения статистическому, надо сказать пару слов о детерминистском хаосе, что мы сейчас и сделаем.

1.2.5 Регуляция кровообращения - детерминистский хаос

Кровообращение - динамический процесс. Биения (движение) сердца не чувствует разве черствый. Более, для обывателя любопытным, специалиста в кардиологии важным является, - движение сердца, биомеханика кровообращения подчиняются нелинейным законам. Когда с регуляцией хорошо. Сердце когда живо и красиво реагирующее на события жизни. Интеллигентное.

Интеллигентность сердца, интегрированность кровообращения в регуляции - результат этой самой регуляции. Которая предшествовавшими параграфами изложена. Анатомия и физиология кровообращения, регуляцию включая, с единой структурной иерархической организацией молекулярных образований, клеток, их агрегатов, тканевых образований, органов и систем управления, убедительнее доказательства вряд ли понадобятся, находятся в состоянии, далеком от термодинамического равновесия, открыты организму и внешнему миру. Есть они все суперпозиция нелинейных динамических квазистохастических процессов [30, 41, 51].

Именно поэтому описанные явления, как-то, давление и объемы крови в камерах сердца, напряжения и деформации стенок сердца, давление, напряжения, объемы, периферическое сосудистое сопротивление, порождаемые биомеханикой сердца, элементарные и более сложные механизмы переходных процессов в сердце (хронотропия, инотропия, преднагрузка, посленагрузка) имеют "много красок", по-разному в разных случаях реагируют. Пословица "день на день не приходится" - как раз именно для кровообращения и предназначена. Потому, что кровообращение - не машина. Тем более, работы топорной.

Все "краски" кровообращения высвечиваются в наиболее удобном виде в HRV - сигнале от многоуровневой регуляции, обладающей всеми фундаментальностями нелинейных динамических процессов.

1.3 Ключевая роль диастолы сердца в кровообращении

Цель параграфа - расставить акценты, обратить внимание на ключевую для кровообращения, его понимания означает, роль диастолы. Самое место призадуматься серьезнейшим образом над тем, что диастола именно формирует систолу сердца и предопределяет циклическую деятельность кровообращения, что энергетические "котлы" мышечного сокращения, восстановительные процессы в сердце, его интерфейс с регуляцией - диастола, …

Но все по порядку.

Обратимся к фазовой структуре диастолы. Первый в ней период изоволюмического расслабления есть энергозависимый процесс. В нем происходит обеспечиваемое ATP расхождение актомиозиновых нитей с уменьшением активных деформаций кардиомиоцитов. Фаза быстрого пассивного наполнения снова активный процесс. В эту фазу реализуется потенциальная энергия сжатия миокарда, накопленная опорнотрофическим остовом в конце периода изгнания, когда желудочки, расширяясь, "засасывали" кровь из предсердий. Фаза медленного пассивного наполнения (диастазис) - пассивный процесс за счет предсердно -желудочкового градиента давления с поступлением в желудочки редуцированного объема крови. Фаза активного наполнения уже по названию снова активный процесс (систола предсердий), когда оставшаяся в предсердиях часть крови после выравнивания давления в предсердиях и желудочках поступает в последние за счет систолы предсердий. Факторами, определяющими диастолу LV, являются активное изоволюмическое расслабление, пассивные вязкоупругие и геометрические (толщина, размеры, форма) свойства миокарда и полостей LV и левого предсердия (LA), конечно-диастолическое давление (наполнения) в систолу предсердий, состояние митрального клапана и связанных с ним структур, систолическая функция LA, транзитная функция LA для крови легочных вен, продолжительность и временная структура диастолы, состояние перикарда, реологические свойства крови [5, 33, 66]. Эти факторы в их совокупности определяют присасывающую функцию LV во время раннего диастолического наполнения, свойства активного энергозависимого расслабления миокарда, его жесткость, диастолическую деформацию полости LV, уровень давления в LA в начале диастолы и в LV в момент открытия митрального клапана, насосную функцию LA в его систолу, градиент давления между LA и LV, ригидность стенок и конечно-диастолическое давление в полости LV. Но все это - вершина айсберга. В основаниях данных явлений находится мало изученная в приложениях именно к диастоле сердца нейрогуморальная регуляция (NGR). Предстоит осознать накопленные физиологией, экспериментальной и клинической патологией и фармакологией факты, свидетельствующие, что влияния, которые видим и ожидаем, точкой приложения имеют именно диастолу.

<<< Назад Содержание Дальше >>>

medbookaide.ru