MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

? - Клиническая физиология сердца

1 2 3 4 5 6 7 8 9 10 11 12 13
<<< Назад Содержание Дальше >>>

1.2.1.3 Вязкоупругие свойства миокарда

Актомиозионовое сопряжение порождает в кардиомиоцитах активные деформации и активные напряжения. Если выделить кардиомиоцит и зафиксировать оба его конца, то при раздражении в результате нарастания актомиозинового перекрытия его длина изменяться не будет, однако напряжения (изометрические) в нем будут возрастать. Напротив, если выделенный кардиомиоцит оставить в свободном состоянии, при возрастающем актомиозиновом перекрытии он будет укорачиваться, однако напряжения (изотонические) в нем возникать не будут. Соотношение между активными и пассивными напряжениями изменяется на протяжении сердечного цикла. В диастолу увеличиваются преимущественно пассивные, в систолу - активные напряжения.

Упругие свойства материала миокарда, проявляемые вне процесса активного сопряжения, называют пассивными. Наиболее вероятные носители упругих свойств - опорно-трофический остов (в особенности - коллагеновые волокна) и актомиозиновые мостики, имеющиеся в определенном количестве и в пассивной мышце. Вклад опорно-трофического остова в упругие свойства миокарда возрастает при склеротических процессах. Мостиковый компонент жесткости увеличивается при ишемической контрактуре и воспалительных заболеваниях миокарда [15]. Отношение жесткостей пассивной и активной фаз существенно зависит от возраста и состояния миокарда. Более высокое оно у новорожденных и при гипертрофии сердца.

Поведение миокарда не является чисто упругим, в нем присутствует и вязкий компонент, проявляющийся релаксацией напряжений (при постоянной деформации) и ползучестью (при постоянной нагрузке). Природа вязких свойств материала миокарда изучена мало. Они обусловлены биополимерами внеклеточного и внутриклеточного каркаса, миоплазмой, актомиозиновыми мостиками и фильтрацией внеклеточной жидкости в среде, образованной структурными элементами миокарда.

1.2.1.4 Регуляция мышечного сокращения

Функции кардиомиоцитов и миокарда в целом регулируются гормонами и нейромедиаторами через управление потоками ионов кальция по системе кальциевых каналов с помощью разнообразных механизмов. Это потенциал действия, системы энергообеспечения актомиозинового сопряжения, изменение числа и пропускной способности кальциевых каналов. Деятельность кардиомиоцитов в целостном миокарде синхронизируется проводящей системой сердца и нейрогуморальными механизмами. В результате сердце интегрируется в целостный орган не только в структурном, но и функциональном отношении.

1.2.1.5 Периодическая организация биомеханики сердца

Функционирование сердца есть циклический процесс. Каждый цикл делится условно на систолу - период сокращения, и диастолу - период расслабления. В систолу желудочков предсердия находятся в диастоле и в диастолу - в систоле. Систолой и диастолой сердца принято считать систолу и диастолу желудочков. В систолу кровь выбрасывается из камеры сердца и в диастолу поступает в нее. Имеет место некоторое запаздывание систолы правых камер сердца к систоле левых.

Систолу и диастолу предсердий и желудочков условно разделяют на более короткие промежутки времени.

Систолу желудочков образуют периоды изоволюмического сокращения (напряжения) и изгнания. Период изоволюмического сокращения состоит из фаз асинхронного и собственно изоволюмического сокращения. В действительности процесс этот не является строго изоволюмическим, так как всегда сопровождается регургитацией части крови в предсердия. Створки атриовентрикулярных клапанов не поспевают закрываться за нарастающим давлением крови желудочков. Степень регургитации в физиологических условиях невелика. В патологических условиях она может сильно возрастать и тогда называть период сокращения изоволюмическим можно только условно.

В фазу асинхронного сокращения (разновременное вовлечение в процесс сокращения разных областей миокарда) возникающие в миокарде напряжения порождают рост внутрижелудочкового давления. Границей между фазами асинхронного и собственно изоволюмического сокращения считается момент быстрого повышения внутрижелудочкового давления, когда скорость его роста на порядок больше, чем в диастолу. В период изоволюмического сокращения предсердно-желудочковые клапаны, а также клапан легочного ствола и аорты закрыты. Объем крови в желудочке не изменяется, а напряжения в стенке возрастают. Период изоволюмического сокращения продолжается до момента, когда давление крови в желудочках не станет равным давлению в легочном стволе или аорте. Как только оно становится большим, клапаны открываются и начинается период изгнания. В этом периоде выделяют фазы быстрого и медленного изгнания. Первая начинается от конца периода изоволюмического сокращения и продолжается до момента, пока скорость повышения давления в сосудах не достигнет максимума. Вторая фаза заканчиваеся моментом достижения объемом крови LV минимального значения. Она заканчивается раньше закрытия клапанов легочного ствола и аорты. Медленной фазой периода изгнания заканчивается систола.

Диастолу желудочков образуют периоды изоволюмической релаксации и диастолического наполнения. Последний делят на фазы быстрого и медленного наполнения, а также систолу предсердий. Основной объем крови в желудочки поступает в фазу быстрого наполнения. Это не только запасенная предсердиями в их систолу кровь, но и транзитная через предсердия из полых и легочных вен. Фаза быстрого наполнения - в значительной мере активный процесс. Реализуется потенциальная энергия сжатия, накопленная в конце периода изгнания, когда желудочки, расширяясь, "засасывают" в себя кровь.

В фазу медленного наполнения в желудочки поступают редуцированные объемы крови. Кровь из предсердий в желудочки поступает пассивно за счет предсердно-желудочкового градиента давления. Как только давление в предсердиях и желудочках выравнивается, начинается систола предсердий. В этой фазе оставшаяся порция крови активно перемещается в желудочки.

Что касается периода изоволюмической релаксации, как и в период изоволюмического сокращения, регургитация крови делает его таковым условно. Особенно при патологических состояниях.

Фазовая структура сердечного цикла определяется частотой сердечных сокращений (HR), с ростом которой укорачиваются все периоды и фазы, более существенно период изгнания и периоды и фазы диастолы. В патологических состояниях отдельные периоды и фазы также могут изменяться [12]. Отклонения длительностей фаз сердечного цикла от их исходной величины называются синдромом фазовых сдвигов. При снижении преднагрузки на сердце период изоволюмического сокращения удлиняется, а период изгнания укорачивается. При уменьшении периферического сопротивления (PR) укорачивается период изгнания, а при уменьшении диастолического артериального давления - период изоволюмического сокращения. Снижение сократимости приводит к удлинению всех фаз систолы.

1.2.1.6 Циклические изменения биомеханики сердца

Циклическая деятельность порождает циклические же изменения объема и давления крови в камерах, формы камер сердца. Сосредоточимся на физиологии внутрисердечной гемодинамики левого сердца.

Всю систолу, период изоволюмической релаксации, а также фазы быстрого и медленного наполнения сердца LA находится в диастоле, остальное время - в систоле. В систолу LA наполняется кровью легочных вен и его объем возрастает, более быстро - в первую ее треть. Далее скорость этот процесс замедляется и завершается в период изоволюмической релаксации LV. В диастолу сердца кровь из LA переходит в LV, в физиологических условиях большая часть в фазу быстрого и меньшая - в фазу медленного наполнения и систолу предсердий. Скорость изменения объема LA больше в фазу быстрого наполнения и меньше в другие фазы, особенно в систолу предсердий. Изменение объема LA за цикл меньше, чем LV, но закон сохранения объемов крови выполняется. В фазы быстрого и медленного наполнения диастолы значительная часть крови попадает в LV транзитом через LA из легочных вен. Давление крови в LA в начале систолы сердца (период изоволюмического сокращения) уменьшается. Далее с наполнением предсердия кровью оно возрастает. Рост давления LA наблюдается на протяжении всей систолы сердца. В период изоволюмического сокращения и фазу быстрого наполнения LV оно снижается. В фазу медленного наполнения LV давление в LA нарастает медленно, а в систолу предсердий - быстро [12, 59].

Объем крови в LV медленно нарастает в диастолу, в периоде изоволюмического сокращения систолы почти не изменяется, в период изгнания уменьшается, в период изоволюмической релаксации вновь почти не изменяется. Объемы LV в конце диастолы и систолы называются конечносистолическим (ESV) и конечнодиастолическим (EDV). Их разность - ударный объем (SV). При пороках аортального и (или) митрального клапанов в SV входит и объем регургитации. В этих случаях SV дополняют FSV выброса (stroke forward volume). Точное значение SV выброса есть интеграл по периоду изгнания от объемной скорости кровотока через аортальный клапан. SV не есть исключительная функция сократительной способности LV и гемодинамических условий, но определяется и конституциональными особенностями человека. В этой связи часто вместо SV используют его норму - фракцию изгнания (EF), которая есть SV, деленный (нормированный) на EDV LV. Часто SV относят к площади поверхности тела пациента - сердечный индекс (СI). Давление крови в LV в фазу медленного наполнения монотонно нарастает, достигая конечнодиастолического значения (EDP). В период изоволюмического сокращения оно быстро увеличивается и к его концу достигает в физиологических условиях 60-80 % максимальной величины (ESP), регистрируемой во второй половине периода изгнания. В этом периоде кривая имеет два максимума и расположенный между ними минимум. Первый максимум связан с конечностью времени открытия створок аортального клапана в начале периода изгнания. Полное открытие аортального клапана приводит к выравниванию давления крови в LV и артериальном резервуаре, вследствие чего оно в желудочке на короткое время падает (минимум). Второй максимум его приходится на последнюю треть периода изгнания, он часто больше первого. В период изоволюмической релаксации и в фазе быстрого наполнения давление в LV снижается. При оценке сократительной деятельности сердца не только учитывают зависимость давления в LV от времени, но и используют индексы для периодов изоволюмического сокращения и изоволюмической релаксации LV (индексы сократимости (IC) и релаксации (IR) LV). Рассчитывают два типа индексов. Первый представляет собой максимум модуля производной от давления крови в LV по времени, второй равен отношению первого к интегралу от давления за соответствующую фазу сердечного цикла. Естественно ввести еще два индекса, равных отношению IC (IR) к частному от деления модуля приращения (падения) давления в LV в соответствующий изоволюмический период к его продолжительности индекс сократимости нормированный (ICN) и индекс релаксации нормированный (IRN). Эти индексы характеризуют степень неравномерности скорости нарастания (падения) давления в LV [10].

Фазовая петля "объем-давление" крови в LV отражает зависимость между объемом и давлением в сердечном цикле. Несколько петель LV, взятые вместе, носят название фазового портрета. Время в фазовой петле задается в неявном виде: с увеличением времени точка вдоль петли движется против часовой стрелки. Нижний участок петли отвечает диастоле, верхний - периоду изгнания, левый - периоду изоволюмической релаксации, правый - периоду изоволюмического сокращения [45]. Участок петли, соответствующий периоду изгнания, в физиологических условиях обычно имеет прогиб вниз, обусловленный кратковременным снижением давления в желудочке при открытии аортального клапана. Чем больше расстояние между вертикальными участками фазовой петли, тем больше SV, чем выше расположен участок изгнания, тем больше среднее давление. Анализируют размеры, форму и расположение фазовой петли, являющейся одной из наиболее информативных функций сердечнососудистой системы. Площадь, ограниченная петлей, представляет собой работу, выполняемую LV по изгнанию крови в BCC. Временные зависимости объема и давления крови в LV вне математического моделирования можно получить лишь при инвазивном исследовании сердца.

Математическое моделирование позволяет оценить свойства миокарда, недоступные прямому измерению даже инвазивными методами, такие как активные деформации и распределение напряжений в стенке LV [10]. Активные деформации в физиологических условиях в период диастолического наполнения обычно изменяются мало, в периодах изоволюмического сокращения и изгнания возрастают, причем их наибольшие значения приходятся на конец периода изгнания. В период изоволюмической релаксации они уменьшаются. Скорость роста и величина активных деформаций на эндокардиальной поверхности LV больше, чем на эпикардиальной. Величина и характер изменения активных деформаций определяют сократимость миокарда, нарушения которой в значительной мере являются следствием изменения уровня и распределения активных деформаций. Напряжения в диастолу и в период изоволюмического сокращения монотонно возрастают. В периоде изгнания они вначале быстро увеличиваются, затем их рост замедляется вплоть до достижения максимального значения. В последующем происходит их некоторое снижение. В период изоволюмической релаксации они уменьшаются. Напряжения максимальны со стороны эндокардиальной поверхности желудочка и претерпевают наиболее существенные изменения в систолу. Глобальный максимум напряжений имеет место со стороны эндокардиальной поверхности LV в период изгнания. По времени он соответствует максимуму скорости роста давления крови в желудочке. Со стороны эпикардиальной поверхности кривая напряжений в период изгнания имеет вид плато.

Наибольшие напряжения оказываются в области анатомических концентраторов. При патологических состояниях возникают также "патологические" концентраторы, представляющие собой границу раздела не вовлеченного и вовлеченного в патологичекий процесс миокарда. В местах концентрации напряжения особенно сильно возрастают, когда накладываются своими границами анатомический и "патологический" концентраторы.

1.2.1.7 Биомеханика клапанного аппарата

Работа предсердно-желудочковых клапанов согласована с биомеханикой предсердий и желудочков. В период сокращения желудочков в связи с повышением внутрижелудочкового давления створки клапанов прерывают сообщение между предсердиями и желудочками и из-за существенного превышения давления в желудочках над давлением в предсердиях выпячиваются в сторону предсердий. Эти изменения более выражены в митральном клапане. В это же время натягиваются сухожильные хорды, укорачиваются и сближаются сосочковые мышцы. В период изгнания створки клапанов все более смыкаются друг другом так, что прилегают не только краями, но частично и краевыми поверхностями. Этим предупреждается обратное поступление крови из желудочков в предсердия (регургитация). Смыкание створок клапанов на высоте периода изгнания не всегда полное и в физиологических условиях допускается некоторая регургитация крови. Удержанию створок в систолу способствует также и давление крови в предсердиях, нарастающее в период изгнания. Вслед за периодом изоволюмической релаксации, когда давление в желудочках падает до значений, более низких, чем в предсердиях, происходит раскрытие створок клапанов и желудочки наполняются кровью. По мере наполнения желудочков кровью створки всплывают и к концу фазы медленного наполнения смыкаются, однако, в отличие от систолы, в ненапряженном состоянии. В фазу быстрого наполнения клапаны максимально раскрыты, их створки, сухожильные нити и сосочковые мышцы как бы распластываются по внутренним стенкам желудочков. В систолу предсердий створки клапанов вновь расходятся, но в меньшей степени, чем в фазу быстрого наполнения.

Клапаны аорты и легочной артерии регулируют гемодинамические взаимоотношения сосудистых резервуаров большого и малого кругов кровообращения с соответствующими желудочками . В период сокращения желудочков давление крови в сосудах оттока выше, чем в желудочках, и клапан закрыт. В начале периода изгнания при превышении давлением желудочков давления в сосудах их клапаны открываются. Из-за того, что пограничные слои крови заходят в аортальный синус и синус легочного ствола под створки клапанов, последние несколько отходят от их стенок, чем уменьшают их просвет в период изгнания. На большем протяжении периода изгнания, когда давление в желудочках выше, клапаны открыты. Но когда давление в сосудах становится больше, возникает обратное течение крови и клапаны прикрываются. К концу периода изгнания они закрываются.

1.2.1.8 Функциональная организация проводящей системы сердца

Циклическая деятельность сердца обеспечивается проводящей системой. Проводящая система циклически генерирует и передает сократительному миокарду электрические импульсы. Эти импульсы запускают в кардиомиоцитах сократительного миокарда потенциал действия. В итоге последние сокращаются. Все элементы проводящей системы обладают автоматизмом. В физиологических условиях основную роль играет синоатриальный узел. Волна возбуждения от него по волокнам проводящей системы распространяется на миокард предсердий и далее желудочков. Импульсы передаются на волокна проводящей системы желудочков через предсердно-желудочковый узел. Здесь происходит задержка импульсов на время, достаточное для разобщения систолы предсердий и желудочков. Благодаря этой задержке в систолу предсердий желудочки находятся в диастоле, и наоборот. Ниже предсердно-желудочкового узла импульсы распространяются по волокнам проводящей системы вплоть до сократительного миокарда точно так же, как и в предсердии. Скорость проведения электрических импульсов составляет 2-5 м/с (больше в крупных, меньше в мелких стволах). Она в 10 раз выше, чем в предсердно-желудочковом узле, а также клетках сократительного миокарда. Высокая скорость распространения возбуждения по волокнам проводящей системы и ее разветвленная структура обеспечивают практически мгновенный охват волной возбуждения миокарда предсердий и желудочков. Как в предсердиях, так и в желудочках, волна возбуждения распространяется от эндокардиальной поверхности к эпикардиальной, поэтому внутренние слои сокращаются раньше наружных. Раньше возбуждаются и сокращаются верхушечные отделы желудочков. Проводящая система, как и деятельность всего сердца, контролируется нейрогуморальными системами.

1.2.2 Физиология кровеносных сосудов

Деятельность сердца по обеспечению органов и тканей кровью опосредуется сосудами большого и малого кругов. Движение крови в сосудах вызывается разницей давлений на их концах и обеспечивается циклической деятельностью сердца. Физиологическими функциями артериального русла являются давление и скорость крови в сосудах, PR и жесткость стенок сосудов. Остановимся на физиологии основных сосудов и сосудистых компартментов.

Давление крови в аорте в диастолу, в период изоволюмического сокращения и на части периода изгнания систолы уменьшается вплоть до полного открытия аортального клапана, что отвечает по времени первому максимуму на кривой внутрижелудочкового давления. В начале диастолы в момент закрытия аортального клапана оно на короткое время увеличивается, образуя так называемый дикротический зубец. Чем дальше от аортального клапана регистрируется давление в аорте, тем меньше величина этого зубца, вплоть до исчезновения. После полного открытия клапана давление быстро возрастает и в промежутке между локальным минимумом и вторым максимумом давления крови в желудочке опережает его рост. Максимальное давление в аорте выше, чем в желудочке. Это различие возрастает в дистальном направлении и сохраняется в крупных ветвях, что в соответствии с законом Бернулли можно объяснить увеличением общего поперечного сечения сосудистого русла при малых потерях на трение. При аортальном стенозе (АС) и некоторых формах гипертрофической кардиомиопатии из-за обструкции аортального клапана или устья аорты возможно заметное превышение максимального давления в желудочке над максимальным давлением в аорте. В клинике артериальное давление (BP) оценивают по максимальному систолическому и минимальному диастолическому в плечевой артерии, одной из ближайших к аорте ее крупных ветвей. В физиологических условиях в состоянии покоя у здорового взрослого человека систолическое давление составляет (110 - 150) мм рт. ст. , диастолическое - (40 - 90) мм рт. ст. При более высоких значениях давления, главным образом диастолического, говорят о синдроме артериальной гипертензии. При пониженных значениях давления, прежде всего систолического, имеет место синдром артериальной гипотензии. Выделяют пульсовое давление (PBP), которое равно разности систолического (SBP) и диастолического (DBP) давлений.

<<< Назад Содержание Дальше >>>

medbookaide.ru