MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Прозоркина H. В., Рубашкина П. А. - Основы микробиологии, вирусологии и иммунологии

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
<<< Назад Содержание Дальше >>>

12. Flavobacterium meningoseptium

13. Haemophilus influenza

14. Hafnia alvei

15. Klebsiella ozaenae

16. Klebsiella pneumoniae

17. Klebsiella rhinoscleromatis

18. Mycobacterium spp. Photochromogens Scotochromogens Nonphotochromogens Rapid growers

19. Micoplasma hominis 1

Micoplasma hominis 2 Micoplasma pneumoniae

20. Propionibacterium avidum

21. Proteus spp.

22. Pseudomonas aeruginosa

23. Salmonella spp.

24. Serratia marcescens

25. Staphilococcus spp.

26. Streptococcus spp.

менингита, септецемий менингита, пневмонии, ларингита холецистита, цистита озены пневмонии риносклеромы микробактериозов местных воспалительных процессов, пневмонии сепсиса, абсцессов пищевой токсикоинфекции, местных воспалительных процессов местных воспалительных процессов, сепсиса сальмонеллезов местных воспалительных процессов, сепсиса пищевой токсикоинфекции, септецемий, пневмонии пневмонии, тонзиллита, полиартрита, септецемий энтерита, колита актиномикоза

27. Yersinia enterocolitica

28. Actinomyces albus

Для того чтобы увидеть микроорганизмы, их необходимо окрасить. Существуют простые и сложные способы окра- шивания микроорганизмов. При простом способе окрашивания на мазок наносится один краситель, при сложном способе окрашивания — 2 или более красителей. К таким способам окрашивания относится окраска по Граму. Соответственно выделяют формы бактерий грамположительные (окрашиваются в фиолетовый цвет) и грамотрицательные (окрашиваются в красный цвет). Грамположительные бактерии имеют несложно организованную, но мощную клеточную стенку, состоящую из множественных слоев пептидоглика-на, включающих уникальные полимеры тейхоевых кислот. Грамотрицательные бактерии имеют более тонкую клеточную стенку, включающую бимолекулярный слой пептидо-гликана и не содержащую тейхоевой кислоты.

Грам +

Грам -

Мембрана

Мукопептиды (муреины)

Мембрана

Лишшолисахариды и белки

Рис. 2. Схема строения клеточной стенки грамположительных и грамотрицательных микроорганизмов

Приготовление мазка из зубного налета

1. Небольшое количество зубного налета снять острым концом спички.

2. Растереть на предметном стекле размером с пятикопеечную монету.

3. Мазок зафиксировать путем трехкратного проведения над пламенем горелки.

4. Мазок окрасить по Граму.

5. Промыть водой.

6. Высушить фильтровальной бумагой и на воздухе.

7. Микроскопировать.

Окраска препарата по Граму

1. Небольшое количество генцианвиолета напить на препарат; время окраски — 2 мин.

2. Избыток краски слить в лоток, на препарат нанести пипеткой несколько капель раствора Люголя на 1 минуту.

3. На препарат налить несколько капель спирта, обесцвечивание проводить до отхождения фиолетовых капель — струи краски, но не более 30 с.

4. Мазок тщательно промыть водой.

5. Мазок докрасить разведенным фуксином — 2 мин.

Микроскопирование препарата

1. Установить освещение: конденсор должен быть поднят до упора, настройку производить с объективом малого увеличения 8-х — необходимо белое освещенное поле.

2. Препарат поместить на предметный столик.

3. Макровинтом опустить объектив на расстояние 0,5 см от препарата.

4. Глядя в окуляр, получить изображение препарата, вращая макровинт против часовой стрелки (на себя).

5. Произвести точную фокусировку с помощью микровинта.

6. Переместить револьвер на большое увеличение (объектив 40-х) и провести дефокусировку только микровинтом.

7. После просмотра препарата перевести револьвер на увеличение 8-х (малое) и только после этого снять препарат с предметного столика.

Кроме окраски по Граму к сложным дифференциальным методам окраски относятся:

1. Окраска кислотоустойчивых бактерий по Цилю— Нильсену фиксированный на пламени горелки мазок окрашивают 3—5 мин раствором карболового фуксина Циля или окрашенной фуксином бумажкой с подогреванием до появления паров, но не доводя краску до кипения;

* дают препарату остыть, бумажку снимают, сливают избыток краски, препарат промывают водой;

* окрашенный препарат обесцвечивают 5% H2SO4 (серной кислотой) в течение 3—5 с или 96° этиловым спиртом, содержащим 3% по объему соляной кислоты, несколько раз погружая в стаканчик с раствором;

* после обесцвечивания остаток кислоты сливают, препарат промывают водой;

* докрашивают дополнительно метиленовой синью Леф-флера 3—5 мин, промывают водой, подсушивают и микроскопируют.

Результаты окраски: при окраске препаратов по методу Циля—Нильсена кислотоустойчивые бактерии окрашиваются фуксином в красный цвет.

2. Окраска по Романовскому—Гимзе

Краска Романовского—Гимзы состоит из смеси азура, эозина и метиленовой сини. Перед употреблением к 10 мл дистиллированной воды прибавляют 10 капель краски Романовского—Гимзы. Приготовленный раствор краски наносят на фиксированный мазок и оставляют на 1 ч. Затем краску сливают, препарат промывают водой и высушивают на воздухе. Краска Романовского—Гимзе окрашивает микробы в фиолетово-красный цвет.

Глава 2 Физиология микроорганизмов

Для понимания процессов обмена веществ в клетке необходимо знать ее химический состав.

Бактериальная клетка состоит из органогенов — азота (8— 15% сухого остатка), углерода (45—55%), кислорода (30%), водорода (6—8%). Из них и других элементов и соединений микроорганизмы синтезируют белки, нуклеопротеиды, углеводы, липиды, нуклеиновые кислоты, ферменты, витамины и пр.

75—85% приходится на долю воды. В спорах бацилл и клостридий концентрация воды 40—50 %, она главная составная часть клетки, находится в связанном состоянии, т. е. структурный элемент цитоплазмы — свободная вода, которая является растворителем для кристаллических веществ, источником водородных ионов и участником химических реакций.

Минеральные вещества бактерий — это неорганические компоненты (фосфор входит в состав нуклеиновых кислот, сера, натрий участвует в поддержании осмотического давления в клетке, магний, калий, кальций, железо ферментов АТФ — аккумулятор энергии в клетке, хлор и др.), микроэлементы в дыхательных ферментах (молибден, кобальт, бор), которые участвуют в синтезе, активизируют их, марганец, цинк, медь и др.

50—80% сухого вещества бактериальной клетки приходится на долю белка. Он распределен в цитоплазме, нуклеоиде, цитоплазматической мембране и других клеточных структурах. К белкам принадлежат ферменты, многие токсины.

Большое значение в жизнедеятельности клетки имеют нуклеопротеиды — соединение белка с нуклеиновыми кислотами ДНК и РНК. Кроме нуклеопротеидов в клетке находятся липопротеиды, гликопротеины, хромопротеины.

ДНК — аденин, гуанин, цитозин, тимин, фосфорная кислота и дезоксирибоза.

РНК — аденин, гуанин, цитозин, урацил, фосфорная кислота, рибоза.

Количественное и качественное разнообразие белковых веществ, их комплексов и аминокислот наделяет мембраны видовой специфичностью.

Нуклеиновые кислоты ДНК содержатся в нуклеоиде и обусловливают генетические свойства, РНК — биосинтез белка.

Углеводы — 12—18% сухого вещества. Это основнойис-точник энергии и углерода.

Многие структурные компоненты клетки состоят из углеводов (оболочка, капсула, слизистый слой). У ряда бактерий в цитоплазме имеются включения, по своему составу напоминающие гликоген, крахмал; играют роль запасных веществ в клетке.

Липиды — составляют ~ 10% сухого остатка. У бактерий, откладывающих жир в виде особых включений, количество липидов доходит до 40% (микобактерии туберкулеза).

Липиды — это запасные вещества, повышающие устойчивость бактерий во внешней среде. Связываясь с белками и углеводами, липиды составляют сложный комплекс, определяющий токсические свойства микроорганизмов.

Жизненные функции микроорганизмов: питание, дыхание, рост и размножение — изучает физиология. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм). Сущность обмена веществ составляют два противоположных, но взаимосвязанных процесса: ассимиляция (анаболизм) и диссимиляция (катаболизм).

Ассимиляция — это усвоение питательных веществ и использование их для синтеза клеточных структур.

При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов. В микроорганизмах происходит интенсивный обмен веществ, за сутки 1 микробная клетка может переработать питательных веществ, которые в 30—40 раз больше ее массы.

Микробная клетка использует питательные субстраты для синтеза составных частей своего тела, ферментов, пигментов роста.

§ 1. Питание бактерий

Типы питания бактерий определяются по характеру усвоения углерода и азота.

По усвоению углерода бактерии делят на 2 типа:

аутотрофы, или литотрофы, — бактерии, использующие в качестве источника углерода СО2 воздуха.

гетеротрофы, или органотрофы, — бактерии, которые нуждаются для своего питания в органическом углероде (углеводы, жирные кислоты).

По способности усваивать азот микроорганизмы делятся на 2 группы: аминоавтотрофы и амоногетеротрофы.

Аминоавтотрофы — для синтеза белка клетки используют молекулярный азот воздуха или усваивают его из аммонийных солей.

Аминогетеротрофы — получают азот из органических соединений — аминокислот, сложных белков. Сюда относятся все патогенные микроорганизмы и большинство сапро-фитов.

По характеру источника использования энергии микроорганизмы делятся на фототрофы, использующие для биосинтетических реакций энергию солнечного света, и хемо-трофы.

Хемотрофы получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенного для человека вида).

Графологическая структура «Питание бактерий» по характеру усвоения углерода по характеру усвоения азота по характеру использования источника энергии аутотрофы гетеротрофы амино- амино- фото- хемо-

(литотрофы) (органотрофы) автотрофы гетеро- трофы трофы

(от греч. litos — трофы камень)

Факторы роста: наряду с пептонами, углеводами, жирными кислотами и неорганическими элементами, бактерии нуждаются в специальных веществах — ростовых факторах, играющих роль катализаторов в биохимических процессах клетки и являющихся структурными единицами при образовании некоторых ферментов. К факторам роста относятся различные витамины, некоторые аминокислоты, пуриновые и пиримидиновые основания и др.

Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания.

Питательные среды подразделяются на 4 основные группы:

* универсальные; специальные;

* избирательные (элективные);

* дифференциально-диагностические .

1. Универсальные (МПА, МПБ) содержат питательные вещества, в присутствии которых растут многие виды патогенных и непатогенных бактерий.

2. Питательные специальные среды применяют для выращивания бактерий, не размножающихся на универсальных средах (кровяной, сывороточный агар, сывороточный бульон).

3. Избирательные (элективные) среды служат для выделения определенного вида микробов, росту которых они способствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Соли желчных кислот, подавляя рост кишечной палочки, делают среду элективной для брюшного тифа.

4. Дифференциально-диагностические среды позволяют отличить (отдифференцировать) один вид микробов от другого по ферментативной активности, например, среды Гиса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды. Кроме того, в лабораториях для первичного посева и транспортировки исследуемого материала применяют консервирующие среды (глицериновую, магниевую и т. д.).

§ 2. Дыхание бактерий

Атмосферный воздух содержит-78% азота, 20% кислорода и 0,03—0,09% углекислого газа. Углекислота и азот воздуха могут быть использованы только аутотрофами. Кислород же играет важную роль в метаболизме (обмене веществ), дыхании и получении энергии большинства видов бактерий.

Дыхание (или биологическое окисление) — это сложный процесс, который сопровождается выделением энергии, необходимой микроорганизмам для синтеза различных органических соединений. Бактерии, как и высшие животные, для дыхания используют кислород. Однако Л. Пастером было доказано существование таких бактерий, для которых наличие свободного кислорода является губительным, энергия, необходимая для жизнедеятельности, получается ими в процессе брожения.

Все бактерии по типу дыхания подразделяются на об-лигатные аэробы, микроаэрофилы, факультативные анаэробы, облигатные анаэробы.

Облигатные (строгие) аэробы развиваются при наличии в атмосфере 20% кислорода (микобактерии туберкулеза), содержат ферменты, с помощью которых осуществляется перенос водорода от окисляемого субстрата к кислороду воздуха.

Микроаэрофилы нуждаются в значительно меньшем количестве кислорода, и его высокая концентрация хотя и не убивает бактерии, но задерживает их рост (актиноисцеты, бруцеллы, лептоспиры).

Факультативные анаэробы могут размножаться как в присутствии, так и в отсутствие кислорода (большинство патогенных и сапрофитных микробов — возбудители брюшного тифа, паратифов, кишечная палочка).

Облигатные анаэробы — бактерии, для которых наличие молекулярного кислорода является губительным (клостри-дии столбняка, ботулизма).

Аэробные бактерии в процессе дыхания окисляют различные органические вещества (углеводы, белки, жиры, спирты, органические кислоты и пр.).

Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Процессы разложения органических веществ в безкислородных условиях, сопровождающиеся выделением энергии, называют брожением. В зависимости от участия определенных механизмов различают следующие виды брожения: спиртовое, осуществляемое дрожжами, молочно-кислое, вызываемое мол очно-кислыми бактериями, масляно-кислое и пр.

С выделением большого количества тепла при дыхании некоторых микроорганизмов связаны процессы самовозгорания торфа, навоза, влажного сена и хлопка.

§ 3. Ферментативная активность бактерий

Ферменты — биологические катализаторы, высокомолекулярные вещества белковой природы, вырабатываемые живой клеткой. Они строго специфичны и играют важнейшую роль в обмене веществ микроорганизмов. Специфичность их связана с активными центрами, образуемыми группой аминокислот, т. е. каждый фермент реагирует с определенным химическим соединением или катализирует одну или несколько близких химических реакций. Например: фермент лактаза расщепляет лактозу, мальтаза — мальтозу и т. д.

Экзоферменты — выделяясь во внешнюю ере- Эндоферменты — участ-ду, расщепляют макромолекулы питательных Вуют в реакциях обмена веществ до более простых соединений, которые могут быть усвоены микробной клеткой (экзоферменты гидролиза вызывают гидролиз жиров, белков, углеводов).

Ферментный состав микроорганизмов является постоянным, а различные виды микробов четко различаются по набору ферментов. Поэтому изучение ферментативного состава имеет важное значение для идентификации различных микроорганизмов.

Практическое использование ферментативных свойств микробов: процессы брожения, грибы в пивоварении и виноделии, обработка шкур, для смягчения; консервирование. Приготовление биодобавок к стиральным порошкам, для удаления белковых загрязнений, так как они расщепляют белки до водорастворимых.

С помощью ферментов получают витамины, гормоны, алкалозы.

веществ, происходящих внутри клетки.

§ 4. Рост и размножение микроорганизмов

Одним из проявлений жизнедеятельности микроорганизмов является их рост и размножение.

Рост — это увеличение размеров отдельной особи.

Размножение — способность организма к воспроизведению.

Основным способом размножения у бактерий является поперечное деление, которое происходит в различных плоскостях с формированием многообразных сочетаний, клеток (гроздья, цепочки, тюки и т. д.). У бактериальных клеток делению предшествует удвоение материнской ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой. Клетки с перегородкой деления расходятся в результате действия ферментов, которые разрушают сердцевину перегородки.

Скорость размножения бактерий различна и зависит от вида микроба, возраста культуры, питательной среды, температуры.

При выращивании бактерий в жидкой питательной среде наблюдается несколько фаз роста культур:

1. Фаза исходная (латентная) — микробы адаптируются к питательной среде, увеличивается размер клеток. К концу этой фазы начинается размножение бактерий.

2. Фаза логарифмического инкубационного роста — идет интенсивное деление клеток. Длится эта фаза около 5 часов. При оптимальных условиях бактериальная клетка может делиться каждые 15—30 мин.

3. Стационарная фаза — число вновь появившихся бактерий равно числу отмерших. Продолжительность этой фазы выражается в часах и колеблется в зависимости от вида микроорганизмов.

4. Фаза отмирания — характеризуется гибелью клеток в условиях истощения питательной среды и накопления в ней продуктов метаболизма микроорганизмов.

5ч 10 15 20 25 30 35 40 45 Время нед нед

Если питательная среда, в которой культивируются микроорганизмы, будет обновляться, то можно поддерживать фазу логарифмического роста.

При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Колонии могут быть выпуклыми или плоскими, с ровными или неровными краями, с шероховатой или гладкой поверхностью и иметь различную окраску: от белой до черной. Все эти особенности (культуральные свойства) учитывают при идентификации бактерий, а также при отборе колоний для получения чистых культур. Чтобы знать, как получить чистую культуру того или иного микроорганизма, надо внимательно ознакомиться с практической частью данной главы.

§ 5. Пигментообразование у бактерий

Образование пигментов происходит при хорошем доступе кислорода и определенном составе питательной среды. По химическому составу и свойствам пигменты неоднородны и подразделяются на:

— растворимые в воде (пиоцианины синегнойной палочки);

— растворимые в спирте;

— нерастворимые в воде;

— нерастворимые в воде и спирте.

Бактерии могут образовывать пигменты разного цвета:

красный — Serratia marcescens; кремовый — Staphilococcus aureus; желтый — Scifreus; синий — синегнойная палочка и т. д.

Пигменты бактерий защищают их от природной ультрафиолетовой радиации, участвуют в процессах дыхания, реакциях синтеза, обладают антибиотическим действием.

Фотогенные бактерии, т. е. бактерии, способные светиться, — это своеобразная форма освобождения энергии при окислительных процессах. Чем сильнее приток кислорода, тем сильнее свечение бактерий.

Светящиеся бактерии называют «фотобактериями». К ним относится большая группа физиологически сходных, но морфологически различимых бактерий (кокки, палочки, вибрионы). Они являются не образующими спор вибрионами. Большая часть видов светящихся бактерий выделена из морской воды; они не вызывают гниения, культивируются в обычных средах. Из некоторых бактерий были получены экстракты, испускающие свет в темном помещении, из некоторых экстрактов был выделен люциферин и фермент люцифераза.

<<< Назад Содержание Дальше >>>

medbookaide.ru