MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Аткинсон Р. и др. - Введение в психологию

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
<<< Назад Содержание Дальше >>>

Рис. 4.25. Схематическое строение среднего и внутреннего уха. а) Движения жидкости внутри улитки изгибают базилярную мембрану и стимулируют волосяные клетки, служащие слуховыми рецепторами, б) На поперечном сечении улитки показана базилярная мембрана и волосяные клетки-рецепторы.

Теперь рассмотрим систему преобразования. Улитка — это спиралевидная трубка из костного вещества. Мембраны разделяют ее на секции, заполненные жидкостью; одна из мембран — базилярная, к ней прикреплены слуховые рецепторы (см. рис, 4.25). Эти рецепторы называются волосяными клетками, потому что по строению они похожи на волоски, проникающие в жидкость. Давление на овальном окошечке (соединяющем среднее и внутреннее ухо) создает изменения давления жидкости в улитке, что, в свою очередь, заставляет базилярную мембрану вибрировать, приводя к изгибанию волосяных клеток и появлению электрического импульса. Таков сложный процесс преобразования звуковой волны в электрический импульс. Нейроны, синаптически соединенные с нервными клетками, имеют длинные аксоны, которые образуют часть слухового нерва. Большинство слуховых нейронов соединены с отдельными нервными клетками. В слуховом нерве около 31 000 слуховых нейронов, что гораздо меньше одного миллиона нейронов, составляющих зрительный нерв (Yost & Nielson, 1985). От каждого уха слуховые пути идут к обеим сторонам мозга и заканчиваются на синапсах различных ядер, прежде чем достигают слуховой коры.

Восприятие интенсивности звука

Вспомним, что наше зрение более чувствительно к одним длинам волн, чем к другим. В слуховом восприятии есть аналогичное явление. Человек более чувствителен к звукам в середине частотного диапазона, чем к звукам с частотой ближе к его краям. Это показано на рис. 4.26, где приведена зависимость абсолютного порога интенсивности звука от частоты. У многих людей слух в той или иной степени ослаблен, и порог у них выше того, что показан на рис. 4.26.

Рис. 4.26. Абсолютный порог для слуха. Нижняя кривая показывает абсолютную пороговую интенсивность для различных частот. Наибольшая чувствительность наблюдается в окрестностях частоты 1000 герц. Верхняя кривая показывает болевой порог (данные аппроксимированы по различным источникам).

Есть два основных варианта недостаточности слуха. При одном из них пороги повышаются примерно в равной степени для всех частот в результате плохой проводимости среднего уха (потеря проводимости). В другом случае потери слуха порог повышается в неравной степени, причем более всего он повышается на высоких частотах. Такая ситуация обычно является следствием повреждения внутреннего уха и часто связана с частичным разрушением волосковых клеток (потеря нервной чувствительности). Волосковые клетки после разрушения не восстанавливаются. Потеря нервной чувствительности возникает у многих пожилых людей. Вот почему им часто трудно расслышать высокие звуки. Однако потеря нервной чувствительности не происходит исключительно у пожилых. Она возникает и у молодых, если на них воздействует чрезмерно громкий звук. Необратимой потерей слуха обычно страдают рок-музыканты, работники взлетно-посадочных полос в аэропортах и работающие с отбойным молотком. Например, у Пита Таунзенда, известного гитариста из группы «The Who», возникло серьезное ослабление слуха из-за того, что на него постоянно воздействовала громкая рок-музыка; с тех пор он предупреждал многих молодых людей об этой опасности.

Естественно предположить, что воспринимаемая интенсивность звука одинакова для обоих ушей, но на самом деле здесь есть тонкие различия. Если звук приходит справа, то для правого уха его слышимость будет больше, чем для левого; это происходит потому, что голова образует «звуковую тень», которая снижает интенсивность звука, доходящего до дальнего уха. Но это вовсе не ограничение слуховых возможностей, поскольку человек использует величину междуушного расхождения в интенсивности для локализации направления звука (это как если бы мы рассуждали, что «если интенсивность звука в моем правом ухе больше, чем в левом, должно быть, звук пришел справа»). Аналогично, звук, приходящий с правой стороны, поступает в правое ухо на долю секунды раньше, чем в левое (и наоборот, если звук пришел слева). Человек также использует это междуушное расхождение во времени, чтобы локализовать звук («если звук сначала пришел в мое правое ухо, значит, он пришел справа»).

Восприятие высоты звука

Высота и частота. Когда мы слышим чистый тон, то воспринимаем не только его громкость, но и высоту. Подобно тому как цвет — главное качество света, так и высота — главное качество звука, ранжированного по шкале от низкого до высокого. И подобно тому как цвет определяется частотой света, высота определяется частотой звука. При возрастании частоты высота увеличивается. Как и длину световой волны, частоту звука человек различает очень хорошо. Молодой взрослый может слышать частоты в диапазоне от 20 до 20 000 герц (колебаний в секунду), причем ЕЗР составляет менее 1 герца при частоте 100 герц и возрастает до 100 герц при 10 килогерцах.

Однако в слуховом восприятии нет ничего похожего на смешение цветов. Когда две и более частот звучат одновременно, можно слышать высоту каждой частоты при условии, что они достаточно различаются. Если частоты различаются несильно, ощущение будет более сложным, но все равно звук не будет похож на один чистый тон. При изучении цветового восприятия обнаружение того факта, что смешение трех цветных источников света дает ощущение одного цвета, привело к идее о трех типах рецепторов. Отсутствие аналогичного явления в слуховом восприятии позволяет предположить, что если есть рецепторы, настроенные на различные частоты, то типов таких рецепторов должно быть множество.

Теории восприятия высоты звука. Как и в случае цветового зрения, для объяснения того, как частота кодируется ухом в высоту звука, были предложены две теории.

Первая теория была создана британским физиком Резерфордом в 1886 году. Он предположил, что: а) звуковая волна заставляет вибрировать всю базилярную мембрану и частота вибраций соответствует частоте звука; б) частота вибраций мембраны задает частоту нервных импульсов, передаваемых по слуховому нерву. Так, тон частотой 1000 герц заставляет базилярную мембрану вибрировать 1000 раз в секунду, в результате чего волокна слухового нерва разряжаются с частотой 1000 импульсов в секунду, а мозг интерпретирует это как определенную высоту. Поскольку в этой теории предполагается, что высота зависит от изменений звука во времени, ее назвали временной теорией (ее называют также частотной теорией).

Гипотеза Резерфорда вскоре встретилась с серьезными проблемами. Было доказано, что нервные волокна могут передавать не более 1000 импульсов в секунду, и тогда неясно, как человек воспринимает высоту тона с частотой более 1000 герц. Вивер (Weaver, 1949) предложил способ спасения временной теории. Он предположил, что частоты выше 1000 герц кодируются различными группами нервных волокон, каждая из которых активируется в несколько разном темпе. Если, например, одна группа нейронов выдает 1000 импульсов в секунду, а затем 1 миллисекунду спустя другая группа нейронов начинает выдавать 1000 импульсов в секунду, то комбинация импульсов этих двух групп даст 2000 импульсов в секунду. Эту версию временной теории подкрепило открытие, что паттерн нервных импульсов в слуховом нерве повторяет форму волны стимульного тона, несмотря на то, что отдельные клетки реагируют не на каждое колебание (Rose et al., 1967).

Однако способность нервных волокон отслеживать форму волны обрывается примерно на частоте 4000 герц; тем не менее мы можем слышать высоту звука, содержащего гораздо более высокие частоты. Отсюда следует, что должно существовать другое средство кодирования высотного качества звука, по крайней мере на высоких частотах.

Другая теория восприятия высоты звука относится к 1683 году, когда французский анатом Жозеф Гишар Дювернье предположил, что частота кодируется высотой звука механически, путем резонанса (Green & Wier, 1984). Чтобы разобраться в этом предположении, полезно сначала рассмотреть пример резонанса. Когда ударяют по камертону, который находится рядом с пианино, струна пианино, настроенная на частоту камертона, начинает колебаться. Если мы говорим, что ухо работает по тому же принципу, это значит, что в нем есть некая структура, сходная по конструкции со струнным инструментом, причем различные ее части настроены на различные частоты, так что когда на ухо предъявляется некоторая частота, соответствующая часть этой структуры начинает колебаться. Эта идея была в общем правильной: такой структурой оказалась базилярная мембрана.

В XIX веке Герман фон Гельмгольц, исходя из гипотезы резонанса, предложил для объяснения восприятия высоты теорию локальности. Согласно этой теории, каждый конкретный участок базилярной мембраны, когда он начинает реагировать, создает ощущение определенной высоты тона. Предполагаемое множество участков на мембране согласуется с фактом существования множества рецепторов высоты. Заметьте, что теория локальности не означает, что мы слышим звук базилярной мембраной; просто от того, какие участки мембраны вибрируют, в наибольшей степени зависит, какую высоту мы услышим. Это пример органа чувства, в котором кодирование качества осуществляется путем «включения» тех или иных нервных волокон.

Как именно колеблется базилярная мембрана, не было известно до 1940 года, когда Георг фон Бекеши измерил ее движения при помощи маленьких отверстий, просверленных в улитках морских свинок и человеческих трупов. Учитывая результаты Бекеши, потребовалось модифицировать теорию локальности; базилярная мембрана вела себя не как пианино с раздельными струнами, а как простыня, которую встряхнули за один конец. В частности, Бекеши показал, что при большинстве частот вся базилярная мембрана приходит в движение, но место наиболее интенсивного движения зависит от конкретной частоты звучания. Высокие частоты вызывают вибрацию в ближнем конце базилярной мембраны; по мере повышения частоты паттерн вибрации сдвигается к овальному окошечку (Bekesy, 1960). За это и другие исследования слуха Бекеши получил в 1961 году Нобелевскую премию.

Как и временные теории, теория локальности объясняет многие, но не все явления восприятия высоты звука. Основные затруднения у теории локальности связаны с тонами низких частот. При частотах ниже 50 герц все части базилярной мембраны вибрируют примерно одинаково. Это значит, что все рецепторы активируются в равной степени, из чего следует, что у нас нет способа различения частот ниже 50 герц. На самом же деле мы можем различать частоту всего в 20 герц.

Таким образом, теории локальности затрудняются объяснить восприятие низкочастотных звуков, а временные теории — восприятие высоких частот. Все это навело на мысль, что восприятие высоты звука определяется как временными паттернами, так и паттернами локализации, причем временная теория объясняет восприятие низких частот, а теория локальности — восприятие высоких частот. Ясно, однако, что там, где один механизм отступает, начинает преобладать другой. На самом деле не исключено, что частоты от 1000 до 5000 герц обслуживаются обоими механизмами (Coren, Ward & Enns, 1999).

Поскольку наши уши и глаза играют столь важную роль в нашей повседневной жизни, были предприняты значительные усилия, направленные на то, чтобы заменить их на искусственные у индивидуумов, страдающих неизлечимыми дефектами этих органов. Некоторые из этих усилий описаны в рубрике «На переднем крае психологических исследований».

Другие ощущения

По сравнению со зрением и слухом, другим ощущениям недостает тех богатых функциональных возможностей, из-за которых зрение и слух называют «высшими чувствами». И все же эти другие чувства жизненно важны. Например, ощущение запаха (обоняние) является одним из наиболее примитивных и наиболее важных из этих ощущений. Возможно, это связано с тем, что запах проникает в мозг по более прямому маршруту, чем любые другие ощущения. Рецепторы, расположенные в носовой полости, связаны с мозгом без посредства синапсов. Более того, в отличие от зрительных и слуховых рецепторов, обонятельные рецепторы испытывают непосредственное воздействие окружающей среды — они находятся прямо в носовой полости и не имеют перед собой защитной оболочки. (Тогда как зрительные рецепторы расположены позади роговой оболочки, а слуховые защищены наружным и средним ухом.) Поскольку запах с очевидностью является важной сенсорной модальностью, мы начнем наше обсуждение других ощущений с ощущения запаха, называемого также обонянием.

Обоняние

Чувство запаха, или обоняние, помогает нашему выживанию: оно необходимо для обнаружения испорченной пищи или незакрытого газа, а потеря обоняния может привести к притуплению аппетита. И все же для многих других биологических видов обоняние еще важнее. Поэтому неудивительно, что у них обонянию отведена большая часть коры, чем у нас. У рыб обонятельная кора почти целиком охватывает полушария мозга, у собак — примерно одну треть, у человека — всего одну двадцатую часть. В этом отражены межвидовые различия в обонятельной чувствительности. Пользуясь преимуществом превосходной обонятельной способности собак, Почтовая служба Соединенных Штатов и Таможенное бюро готовят их для проверки невскрытых упаковок на героин. А специально натренированные полицейские собаки могут разнюхать спрятанную взрывчатку.

Поскольку обоняние у других видов развито столь хорошо, они часто используют его как ведущее средство коммуникации. Насекомые и некоторые высшие животные выделяют химические вещества, известные как феромоны и распространяющиеся по воздуху, так чтобы их могли унюхать другие представители этого же вида. Например, самка мотылька может выделять настолько сильный феромон, что самцов влечет к ней с расстояния в несколько миль. Установлено, что самец мотылька реагирует именно на феромон, а не на вид самки; его будет влечь к самке, находящейся в контейнере из проволочной сетки, несмотря на то, что ее вид недоступен, но не к самке в стеклянном контейнере, где ее хорошо видно, но путь для запаха блокирован.

Насекомые пользуются запахом, чтобы сообщать не только о «любви», но и о смерти. Когда муравей умирает, химические вещества, образующиеся при разложении его тела, стимулируют других муравьев отнести его тело на мусорную кучу снаружи гнезда. Если живого муравья пропитать этим феромоном разложения, другие муравьи тут же относят его на мусорную кучу. Когда он возвращается в гнездо, его уносят опять. Эти попытки преждевременных похорон продолжаются, пока «запах смерти» не выдохнется (Wilson, 1963).

Остались ли у нас, людей, пережитки этой примитивной системы общения? Эксперименты показывают, что как минимум мы можем отличать по запаху себя от других и мужчин от женщин. В одном из исследований испытуемые носили майку в течение 24 часов, не принимая душ и не пользуясь дезодорантом. Затем они сдавали майки экспериментатору. Каждому испытуемому экспериментатор предъявлял для обнюхивания три майки: собственную майку испытуемого, одну мужскую и одну женскую.

Основываясь только на запахе, большинство испытуемых обычно могли отличить свою собственную майку, а также определить, какую из двух остальных носил мужчина, а какую — женщина (Russel, 1976; Schleidt, Hold & Attili, 1981). Другие исследования показывают, что по запаху мы можем определять и более тонкие вещи. Между женщинами, которые живут или работают вместе, видимо, происходит обмен информацией посредством запаха относительно их менструального цикла, так что со временем их менструальные циклы синхронизируются и начинаются в одно время (Russel, Switz & Thompson, 1980; McClintock, 1971).

Система обоняния. Стимулом для запаха являются испускаемые веществом летучие молекулы. Молекулы выходят из вещества, проносятся по воздуху и входят в носовой проход (рис. 4.27). Этим молекулам предстоит также раствориться в жире, поскольку рецепторы запаха покрыты жироподобным веществом.

Рис. 4.27. Рецепторы обоняния. а) Деталь рецептора, находящегося в промежутках между многочисленными поддерживающими клетками. б) Расположение обонятельных рецепторов в носовой полости.

Система обоняния состоит из рецепторов, расположенных в носовом проходе, соответствующих участков мозга и соединяющих их проводящих нервных путей. Рецепторы обоняния расположены глубоко в носовой полости. Когда реснички (образования, похожие на волоски) этих рецепторов соприкасаются с молекулами пахучего вещества, появляется электрический импульс; таков процесс превращения. Этот импульс передается по нервным волокнам в обонятельную луковицу — участок мозга, находящийся как раз под передними долями. В свою очередь, обонятельная луковица соединяется с обонятельной корой, расположенной с внутренней стороны височных долей. (Любопытно, что существует прямая связь между обонятельной луковицей и частью коры, которая, как известно, участвует в формировании следов долговременной памяти; возможно, с этим связано представление, что характерный запах может сильно способствовать воспроизведению старых воспоминаний.) Ощущение интенсивности и качества. Чувствительность человека к интенсивности запаха в сильнейшей степени зависит от того, что это за вещество. Абсолютный порог может составлять всего 1 часть вещества на 50 миллиардов частей воздуха. Тем не менее, как уже отмечалось, чувствительность человека к запахам значительно меньше, чем у других видов. Собаки, например, могут обнаруживать вещества с концентрацией в 100 раз ниже, чем концентрация, которую способен обнаружить человек (Marshall, Blumer & Moulton, 1981). Относительно слабая чувствительность человека к запахам объясняется не тем, что у него чувствительность обонятельных рецепторов меньше, а тем, что их самих меньше: примерно 10 миллионов у человека против 1 миллиарда у собак.

<�Рис. Острое обоняние собаки — хорошее подспорье закону, что наглядно демонстрирует этот пес, отыскивающий наркотики.> Хотя на запах мы полагаемся меньше, чем на другие модальности, мы способны ощущать много различных качеств запаха. Оценки расходятся, но, по-видимому, здоровый человек способен различить от 10 000 до 40 000 различных запахов, причем у женщин этот показатель в целом лучше (Cain, 1988). У профессиональных парфюмеров и дегустаторов виски результаты еще выше — они различают до 100 000 запахов (Dobb, 1989). Далее, нам кое-что известно о том, как обонятельная система кодирует качество запахов на биологическом уровне. Ситуация здесь совершенно отлична от кодирования цвета в зрении, где достаточно всего трех типов рецепторов. В обонянии, видимо, участвует множество типов рецепторов; по оценкам недавних работ, 1000 типов обонятельных рецепторов не будет преувеличением (Buck & Axel, 1991). Рецепторы каждого типа кодируют не один конкретный запах, они могут реагировать на много различных запахов (Matthews, 1972). Так что даже в этой богатой рецепторами сенсорной модальности качество запаха может быть частично закодировано в паттерне нервной активности.

Вкус

Вкус часто связывают с теми ощущениями, которые на самом деле к нему не относятся. Мы говорим, что еда «вкусная», но если запах устранить сильным замораживанием, ощущения от обеда тускнеют и тогда может быть трудно отличить красное вино от уксуса. И все же вкус (или густация) имеет самостоятельную ценность. Даже на сильном холоде можно отличить соленую пищу от несоленой.

В дальнейшем мы будем говорить о вкусе определенных веществ, хотя заметим, что вкушаемое вещество не является единственным фактором, определяющим его вкус. Наше генетическое устройство и опыт также влияют на вкус. Например, у всех людей разная чувствительность к горькому вкусу кофеина или сахарина, и это различие, видимо, предопределено генетически (Bartoshuk, 1979). В качестве другого примера молено привести жителей провинции Карнатака в Индии, которые едят много кислой пищи и находят вкус лимонной кислоты или хинина приятным; большинство из нас испытывает обратные ощущения. Это частное различие вкусов людей, видимо, определяется опытом, поскольку индусы, выросшие в западной стране, считают вкус лимонной кислоты и хинина неприятным (Moskowitz et al., 1975).

<<< Назад Содержание Дальше >>>

medbookaide.ru