MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Клоссовский Б. Н. - Циркуляция крови в мозгу

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
<<< Назад Содержание Дальше >>>

Снижение пульсовой волны в сосудах виллизиева круга мы объясняем в первую очередь амортизирующим влиянием сифонов, располагающихся, как мы уже видели, на внутренней сонной и позвоночных артериях при входе их в полость черепа. Той же цели служат изгибы на проксимальных концах всех крупных артерий мозга, еще более уменьшающие остатки тех пульсовых волн, которые дошли до них.

К приспособлениям, выравнивающим переменный ток крови и превращающим его в постоянный, должно быть также отнесено сетеобразное распределение артерий в мягкой мозговой оболочке.

Благодаря существованию указанных приспособлений разница между систолическим и диастолическим давлением в сосудах виллизиева круга, по нашим наблюдениям, не превышает 10 мм. Однако она значительно увеличивается, как только нарушается герметичность черепа.

Исходя из вышесказанного, мы построили модель черепной полости. Для этой цели была взята колба, заполненная водой и содержащая пузырек воздуха. Колба соединялась с ртутным манометром типа Рива-Роччи так, как это показано на рис. 171, а. С помощью резинового баллона можно было вызывать колебания давления. На этой модели мы могли убедиться, что изменение давления на 20 мм в ту или другую сторону имеет своим следствием заметное уменьшение или увеличение Рис. 170. Сравнительная величина пульсовой волны при записи кровяного давления в центральном и периферическом участке сонной артерии.

а —давление, записанное от сердца; б—давление в сосудах виллизиева круга.

Запись ртутным манометром.

объема пузырька воздуха в колбе (рис. 171, б). Колебания давления на 10 мм давали еле заметные изменения объема пузырька, но вполне различимые невооруженным глазом.

Получив эти данные, мы под прозрачным черепом оставляли небольшой пузырек воздуха, который резко пульсировал в том случае, если был открыт один из винтов, закрывающий полость прозрачного черепа. Но когда это отверстие закрывалось, пульсация пузырька мгновенно прекращалась. Колебаний пузырька нельзя было уловить и с помощью капилляроскопа. Если бы мозг где-нибудь пульсировал, это в первую очередь сказалось бы на объеме воздушного пузырька. Отсюда можно сделать вывод, что в закрытой полости черепа во время систолы и диастолы нет такого колебания в давлении, которое могло бы вызвать сдавление пузырька воздуха. Надо думать, что тоническое состояние сосудистой стенки таково, что оно может противостоять ничтожной пульсовой волне, имеющейся в сосудах мозга. Но в таком случае придется предположить, что в мозговых сосудах кровь течет не ровным потоком, а толчкообразно, причем при каждой систоле имеется некоторое увеличение скорости тока крови.

Это предположение согласуется с опытами тех авторов, которые при наличии герметически закрытого черепа отмечали иногда отчетливо толчкообразное выхождение крови из перерезанной яремной вены (Моссо).

Однако при изучении движения крови по сосудам мягкой мозговой оболочки через капилляроскоп в герметически закрытом черепе мы никогда не видели толчкообразного движения крови. Как в нормальных Рис. 171, а и б. Общий вид опыта по определению степени изменения объема пузырька воздуха при колебаниях давления в герметически закрытом пространстве.

На рис. 171, б видно, что увеличение давления на 20 мм ртутного столба вызывает лишь незначительное изменение объема пузырька воздуха.

условиях, так и при медленной кровопотере и после нее, когда становится возможным проследить движение отдельных эритроцитов, кровь постоянно движется по сосудам ровным потоком.

При увеличении кровяного давления тонически напряженная стенка сосудов будет противостоять давлению лишь при увеличении его до определенного уровня. До тех пор, пока тонус сосудистой стенки будет больше давления в сосуде, ток крови по сосудам и капиллярам, увеличиваясь в скорости, не будет сопровождаться изменением просвета сосудов. После достижения кровяным давлением определенного уровня, когда стенка сосуда не в cостоянии противостоять ему, сосуды мозга расширятся. Вместе с расширением сосудов увеличится количество крови в мозгу. Соответственно с этим уменьшится количество ликвора и уменьшатся субарахноидальные пространства. Остается нерешенным вопрос, куда всасывается ликвор, так как давление увеличивается на некоторую величину и в венозной части сосудистого русла мозга. Можно лишь предполагать, что ликвор будет уходить из полости черепа через влагалища черепномозговых и спинномозговых нервов.

Наши опыты с заменой крыши костного черепа прозрачной крышей из плексигласа позволяют с категоричностью отвергнуть утверждение некоторых авторов, приписывающих твердой мозговой оболочке функцию всасывания ликвора.

Если бы подобного рода предположение было справедливо, у животных с прозрачным черепом должно было бы происходить накопление ликвора в субарахноидальных пространствах. Это накопление было бы тем больше, чем дольше животное жило с прозрачным черепок и с удаленной в основном твердой мозговой оболочкой. Иначе говоря, отмечалась бы наружная гидроцефалия и повышение внутричерепного давления. Ко в наших экспериментах мы никогда не отмечали ничего подобного. Внутричерепное давление не повышалось, ликвор не накапливался в избыточном количестве. Исходя из этого, приходится сделать вывод, что твердая мозговая оболочка не принимает участия в резорбции ликвора.

Заключение

Сложность всей проблемы изучения циркуляции крови в мозгу в целом заключается в том, что ее нельзя решить только рассмотрением вопросов структуры сосудистой системы мозга и перемещения крови по сосудам.

В закрытой (не поврежденной) черепной коробке отсутствуют пуль-саторные движения мозга, которые наблюдаются при нарушении целости костей черепа.

Объем содержимого полости черепа складывается из количества крови в сосудистой сети всего мозга в целом, количества спинномозговой жидкости и из объема, который занимает сама мозговая ткань: нервные клетки, глия, парапластическая субстанция. Каждая из составных частей содержимого черепа — мозговое вещество, кровь и спинномозговая жидкость—несжимаема и вследствие этого объем содержимого полости черепа постоянен. В пределах постоянного объема содержимого черепа соотношение объемов отдельных составляющих частей его может изменяться в зависимости от той или иной деятельности мозга. Вместе с тем изменение объема каждой составляющей части может происходить только при условии изменения или какой-либо другой части, или всех других частей, составляющих содержимое полости черепа. При одном и том же количестве крови в сосудистой сети всего мозга в целом и неизменном количестве спинномозговой жидкости возможно, однако, изменение объема отдельных частей мозга вследствие перераспределения крови. Расширение сосудов в какой-либо области мозга ведет к увеличению в них количества крови и соответственно к увеличению объема данной области. Одновременно с этим происходит уменьшение объема других областей мозга вследствие сужения сосудов и уменьшения количества крови в них.

Наиболее подвижными частями содержимого полости черепа являются кровь и спинномозговая жидкость. Изменение объема одной из них всегда влечет за собой изменение объема другой. Увеличение количества крови во всей сосудистой сети мозга сопровождается соответствующим уменьшением количества спинномозговой жидкости и наоборот. Следовательно, кровообращение в мозгу тесно связано с циркуляцией в нем спинномозговой жидкости.

Вместе с тем от циркуляции крови и спинномозговой жидкости в мозгу зависит определенный уровень обмена веществ в нервных клетках. «Из всех органов растительной жизни, — говорит К. М. Быков, — органы кровеносной системы, пожалуй, больше всего участвуют в создании условий, обеспечивающих быструю перестройку жизнедеятельности тканей при изменении условий существования организма как целого в окружающей его среде. Все "местные сдвиги" в тканевом объеме создаются обязательно при определенных условиях кровоснабжения».

Однако циркуляция крови в мозгу в свою очередь зависит от состояния нервных клеток, глии, парапластической субстанции. Биохимические сдвиги в нервных клетках, глии, парапластической субстанции, возникающие под влиянием воздействия внешних раздражителей, ведут к изменению состояния коллоидов мозговой субстанции (к различным степеням набухания, отека или сморщивания) и тем самым к изменению циркуляции крови в соответствующей области мозга. Каждое из этих состояний по-своему влияет на кровообращение в тех частях мозга, где они произошли. Отсюда понятно, что изучение проблемы циркуляции крови в мозгу связано с изучением состояний мозгового вещества, лежащих в основе физиологической и патологической деятельности мозга.

Теоретическое обоснование циркуляции крови в мозгу в целом может быть дано только после того, как дополнительно к закономерностям кровообращения будут установлены закономерности ликворообращения в мозгу и будет разрешен вопрос об изменениях состояния мозгового вещества при различных видах физиологической и патологической функциональной деятельности мозга.

На основании полученных до настоящего Бремени фактических данных пока еще невозможно создать целостную теорию мозгового кровообращения; эти данные позволяют построить лишь рабочую схему, освещающую некоторые стороны этой сложной проблемы с тем, чтобы можно было наметить путь, по которому должно итти дальнейшее исследование.

Нервная клетка является очагом нервной деятельности (И. П. Павлов), для своего существования и нормального функционирования она нуждается в непрерывном притоке определенного количества кислорода и питательных веществ. Современные исследования указывают на огромные скорости протекания в нервной клетке процессов обмена углеводов,, жиров и белков. Интенсивность процессов обмена веществ в нервных клетках находит свое отражение в особенностях взаимодействия их с окружающими капиллярами. Нервные клетки, функциональная деятельность которых в норме особенно велика, окружена большим количеством капилляров, проходящих в непосредственной близости от поверхности тела клетки или вступающих с телом клетки в еще более близкие взаимоотношения.

С интенсивными процессами обмена веществ в нервной клетке связана и большая скорость прохождения крови по сосудам мозга (2 секунды). Нервная клетка нуждается не только в притоке кислорода и питательных веществ, но и в быстром выведении продуктов обмена. Кровь, циркулирует как бы по артерио-венозным единицам, представляющим собой наиболее короткие пути для тока крови в мозгу. Конечно, эти артерио-венозные единицы в мозгу высших млекопитающих не являются анатомически фиксированными частями сосудистой сети, как это наблюдается в мозгу сумчатых животных (например, у кенгуру), а создаются каждый раз в зависимости от функциональной деятельности мозга.

Постоянный и равномерный ток крови по сосудам мозга обеспечивается в первую очередь нахождением мозга в закрытом черепе и отсутствием вследствие этого пульсаторных движений мозга. Помимо этого, существует еще ряд приспособлений, с помощью которых происходит резкое уменьшение пульсовой волны в сосудах виллизиева круга по сравнению с величиной ее в сонных артериях и других крупных сосудах организма.

Первым приспособлением такого рода являются изгибы или сифоны внутренних сонных и позвоночных артерий, расположенные по пути тока крови от сердца к мозгу. Пульсовая волна, значительно уменьшенная после прохождения тока крови но сифонам сонных и позвоночных артерий, еще более уменьшается в сосудах мягкой мозговой оболочки и во внутримозговых сосудах.

Артерии мозга характеризуются наличием хорошо развитой внутренней эластической оболочки, которая расположена непосредственно за эндотелием. Несмотря на то, что внутренний эластический слой вари-ирует по толщине, все же отношение его величины к величине мышечного слоя в мозговых артериях значительно больше, чем в артериях других частей тела. Эластические волокна, собранные в один мощный слой, окружены слоем гладких мышц, почти не содержащих эластических волокон.

Таким образом, пульсовой удар, ослабленный уже в сифонах сонных и позвоночных артерий, встречается с противодействием по особому организованных слоев стенок артерий головного мозга.

Наличие в стенках их резко отграниченных мышечных и эластических слоев, каждый из которых влияет на изменение условий прохождения пульсовой волны, является причиной значительного угашения ее. Постоянство тока крови по сосудам мозга обусловливается также анатомическим распределением сосудов в мягкой мозговой оболочке и в мозговом веществе.

На поверхности мозга в мягкой мозговой оболочке артерии формируют непрерывную сложную сеть с большим количеством анастомозов в ней. Наличие анастомозов не только между ветвями передней, средней и задней мозговых артерий, но и между самими ветвями каждой из этих артерий в области ее распределения создает широкие возможности для перемещения крови и обеспечивает одинаковое давление во всех участках сети. От артериальной сети мозга, расположенной в отличие от других органов на поверхности его, отходят внутримозговые или радиальные артерии.

Благодаря тому что в различных участках артериальной сети мягкой мозговой оболочки имеется одинаковое давление, кровь под равным давлением поступает и во все радиальные артерии. Радиальные артерии после отдачи боковых ветвей распадаются на сеть капилляров, объединяющих сосудистую сеть всех слоев серого и белого вещества, а также сосудистые сети коры и подкорковых узлов в одно целое. В отличие от мягкой мозговой оболочки, где равномерность распределения крови по сосудам достигается с помощью многочисленных анастомозов, внутри мозгового вещества эта равномерность обеспечивается капиллярной сетью. Анастомозы между ветвями внутримозговых артерий коры являются редким исключением; между ветвями внутримозговых вен они встречаются несколько чаще. Артерио-венозные анастомозы совершенно отсутствуют в сосудистой сети мягкой мозговой оболочки и внутри мозга, что является физиологически нормальным, наличие их должно было бы вести к окольному перемещению артериальной крови, минуя капиллярное русло, вследствие чего нарушалась бы равномерность тока крови по капиллярам, окружающим нервные клетки.

Кроме указанных структурных приспособлений, поддерживающих постоянство тока крови по сосудам мозга, существуют также нервные механизмы, обеспечивающие постоянство кровяного давления в мозгу. Среди этих механизмов решающее значение имеют рефлексы с каротид-ного синуса, располагающегося на пути тока крови к мозгу во внутренней сонной артерии, затем рефлекторные влияния с аортальной зоны. Рефлексы с каротидного синуса и дуги аорты регулируют постоянство давления крови в сосудах мозга косвенным образом, в основном изменяя общее кровяное давление, — понижая его в том случае, если оно резко повышено, и, наоборот, повышая, если оно резко снижено.

Постоянство внутричерепного давления поддерживается рефлекторными влияниями с интерорецепторов твердой мозговой оболочки на общее кровяное давление. Сдавление этих рецепторов в случае повышения внутричерепного давления ведет к снижению общего кровяного давления, а тем самым и к уменьшению поступления крови к мозгу.

Некоторые данные позволяют считать, что эндолимфатический мешочек перепончатого лабиринта, находящийся под твердой мозговой оболочкой в задней черепной ямке, представляет собой механизм, реагирующий на колебания внутричерепного давления. Повышение внутри-мозгового давления, передающееся с мешочка на рецепторы перепончатого лабиринта, ведет рефлекторно к понижению общего кровяного давления и, следовательно, вторично к понижению давления в сосудах мозга. Другими словами, эндолимфатический мешочек через рецепторы вестибулярного аппарата косвенно регулирует поступление крови в мозг.

Таким образом, поступление крови в мозг регулируется целым рядом механизмов. Однако эта регуляция не является непосредственной. Рефлексы с каротидного синуса, дуги аорты, твердой мозговой оболочки и эндолимфатического мешочка в основном уменьшают или увеличивают количество крови, проходящей через мозг, изменяя только общее кровяное давление.

Наиболее мощным рефлекторным механизмом при этом является рецепторный аппарат каротидного синуса и дуги аорты. Рефлексы с каротидного синуса и дуги аорты обеспечивают поступление к мозгу определенного постоянного количества крови под определенным давлением.

Что же касается рефлексов с твердой мозговой оболочки и эндолимфатического мешочка, то обращает на себя внимание, что названные механизмы оберегают мозг от переполнения его кровью. Однако нервные клетки, требующие для нормального протекания обмена веществ в них непрерывного определенного количества крови, в условиях повышенной жизнедеятельности нуждаются в притоке значительно большего количества ее. Такое повышение жизнедеятельности нервных клеток в той или иной области мозга может наступить, например, при раздражении соответствующего данному корковому анализатору рецептора на периферии.

При наличии поступления к мозгу в целом определенного количества крови распределение ее в сосудистой сети происходит таким образом, что сосуды мягкой мозговой оболочки, подводящие кровь к области, рецепторы которой раздражаются в данный момент, расширяются, тогда как сосуды в других, не напряженно работающих областях суживаются. Одновременно с этим увеличивается скорость тока крови во внутримозговых сосудах и повышается температура той области, рецептор которой в данный момент раздражается. Таким образом, повышение функциональной деятельности нервных клеток в каком-либо анализаторе сопровождается перераспределением крови в сосудистой сети мозга. В одних участках мягкой мозговой оболочки и мозга сосуды расширяются, в других суживаются. Другими словами, в полушариях головного мозга отмечается своеобразная функциональная мозаичность сосудистой сети, что является отражением установленной И. П. Павловым мозаики функциональной деятельности в полушариях головного мозга. В своем труде «Высшая нервная деятельность животных» (1926, стр. 203) И. П. Павлов писал: «Если бы мы могли посмотреть через крышу черепа и если бы место полушарий головного мозга с наивысшей возбудимостью светилось, то у сознательно думающего человека мы увидели бы перемещение по полушариям очень светлого пятна. Это пятно имело бы удивительно неправильные очертания, было бы непостоянным по форме и величине и было бы окружено на всей остальной поверхности полушарий более или менее отчетливо выраженными тенями».

Перераспределение крови в мозгу в случаях повышения функциональной деятельности какого-либо анализатора обеспечивается нервными и гуморальными факторами. В настоящее время установлено, что просвет сосудов лобно-теменной и теменной области регулируется влиянием со стороны вестибулярного аппарата, лицевого нерва и большого каменистого нерва. Расширение сосудов в указанных областях мягкой мозговой оболочки при раздражении вестибулярного и лицевого нерва может рассматриваться как подготовительный (установочный) акт, обеспечивающий поступление большего количества крови во внутримозговые сосуды тех областей, функция которых в следующий момент повышается.

Решение вопроса о том, каким образом осуществляется нервной системой регуляция внутримозговых сосудов, затруднено тем обстоятельством, что сосуды и капилляры внутри мозга находятся в окружении нервных клеток, глии, парапластической субстанции. Сосудисто-капиллярная сеть мозга является составной частью мозговой ткани в целом, и реакции ее на то или иное воздействие в закрытом черепе нельзя рассматривать изолированно от реакций других компонентов мозгового вещества. Действительно, сужение капилляров внутри мозга не может происходить без одновременного набухания парапластической субстанции и нервных клеток. Наоборот, расширение капилляров должно сопровождаться уменьшением объема парапластической субстанции и нервных клеток. Таким образом, вопрос об иннервации капилляров мозга находите в тесной связи с вопросом о различных коллоидных состояниях мозгового вещества. Исходя из этих соображений, на нервы, обнаруженные в большом количестве внутри мозгового вещества, нужно смотреть не как на непосредственные регуляторы просвета внутримозговых сосудов и капилляров, а как на регуляторы обмена веществ нервных клеток и парапластической субстанции, от состояния которых зависит просвет капилляров. С этой точки зрения следует полагать, что роль симпатических нервов в мозгу заключается в ускорении всех процессов обмена веществ, в то время как парасимпатические нервы, наряду с функцией расширения сосудов в мягкой мозговой оболочке, регулируют ассимиляционные процессы внутри мозга. В такой связи было бы понятно, почему симпатический отдел нервной системы оказывает незначительное по силе воздействие на сосуды мягкой мозговой оболочки.

<<< Назад Содержание Дальше >>>

medbookaide.ru