MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Клоссовский Б. Н. - Циркуляция крови в мозгу

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
<<< Назад Содержание Дальше >>>

Менее ясным представляется механизм действия углекислоты на сосуды мозга. Предположение о действии ее непосредственно на мышечную оболочку мозгового сосуда, ведущем к изменению ее тонического-состояния, к сожалению, пока не подтверждено изучением распределения интерорецепторов в сосудистой стенке. Обнаружение рецептормых аппаратов внутри мозговых сосудов, а главное, в капиллярах, в основном являющихся точкой приложения для углекислоты, возможно, также покажет, что действие углекислоты на сосуды мозга опосредовано через, нервную систему.

Мы рассмотрели существующие данные относительно реакций сосудов мягкой мозговой оболочки и мозгового вещества при действии на них различных факторов. Как уже говорилось, сведения о реакциях сосудов были получены или при непосредственном наблюдении мягкой мозговой оболочки через окно, герметически вставленное в череп, или с помощью физиологических методов изучения. Однако, кроме измерения температуры и скорости тока крови в сосудах, представление о характере реакций внутримозговых сосудов может быть получено и при рассмотрении гистологических препаратов. Изучение гистологических препаратов, приготовленных да мозга животных, убитых после того, как а мозгу их было вызвано интересующее исследователя состояние, может дать ответ на вопрос о характере реакций капиллярной сети мозга, тем более что капилляры составляют основную массу сосудистой сети внутри мозга и не входят в состав сосудистой сети мягкой мозговой оболочки.

Глава X. Виды смерти экспериментальных животных и методы обработки сосудисто капиллярной сети мозга

(описание собственной методики импрегнации сосудисто-капиллярной сети мозга) Выше уже указывалось, что внутримозговые сосуды отвечают суже нием или расширением на целый ряд воздействий. Исходя из этого, необходимо установить, настолько картина сосудисто-капиллярной сети мозга после смерти животного является эквивалентной тому состоянию ее, которое длительно существовало в мозгу перед смертью и было вызвано экспериментальным путем.

Для решения последнего вопроса большое, если не решающее, значение имеет вид смерти животного и последующая гистологическая обработка материала.

Существует много разнообразных способов умерщвления животных после окончания опыта. Животное умерщвляют наркозом, электрическим током, перерезкой спинного мозга под продолговатым, удушением. используют введение в сердце формальдегида, декапитацию и другие способы.

Рассмотрим, хотя бы кратко, то состояние сосудисто-капиллярной сети мозга, которое имеет место при некоторых из перечисленных способах умерщвления животных.

На рис. 150 и 151 показана капиллярная сеть краевой извилины у нормальной взрослой кошки и кошки того же возраста, погибшей во время наркотизации (применялся обычный «кошачий» наркоз — 1 часть спирта, 2 части эфира, 3 части хлороформа). Как видно, смерть от наркоза вызывает отчетливое изменение состояния капиллярной сети мозга и выражается в значительном равномерном уменьшении просвета составляющих ее капилляров. Последовательная регистрация состояния сосудистой сети мягкой мозговой оболочки в случаях смерти животного от наркоза позволила нам проследить, насколько велики изменения диаметра сосудов, наступающие в этих условиях (Б. Н. Клосовский, Е. Н. Космарская, 1950). В этом можно убедиться при сравнении микрофотографии (рис. 152, а), сделанной с сосудов мягкой мозговой оболочки кошки, находившейся в слабом наркозе, с микрофотографией (рис. 152, е), снятой через 6 минут после смерти животного. Эти микрофотографии с достаточной очевидностью показывают, насколько далеко от действительности состояние сосудистой сети мягкой мозговой оболочки, наблюдающееся в случае смерти от наркоза.

Рис. 150. Капиллярная сеть мозгового вещества нормальной взрослой кошки, убитой декапитацией.

Импрегнация по методу Б. Н. Клосонского. Увеличение 400.

Рис. 151. Капиллярная сеть мозга кошки, погибшей от наркоза. Импрегнация по методу Б. Н. Клосовского. Увеличение 400.

Рис. 152. Изменение сосудистой сети мягкой мозговой оболочки при смерти от наркоза.

а — артерии и вены мягкой мозговой оболочки во время сна кошки и состоянии слабого наркоза; б — через 20 секунд после добавления наркоза.

Рис. 152. Изменение сосудистой сети мягкой мозговой оболочки при смерти от наркоза.

в — через 25 секунд после остановки дыхания; г— артерии и вены через 1 минуту 10 секунд после остановки дыхания.

Рис. 152. Изменение сосудистой сети мягкой мозговой оболочки при смерти от наркоза. д — сосуды мягкой мозговой , оболочки через 3 минуты 40 секунд после остановки дыхания; е — сосуды через 6 минут после остановки дыхания. Фото через «окно» в черепе с помощью капилляроскопа. Увеличение 60.

Рис. 153. Капиллярная сеть мозгового вещества после перерезки спинного мозга под продолговатым.

а — импрегнация сосудисто-капиллярной сети мозга по методу Клосовского (увеличение 340); б — окраска по методу Зроса. Увеличение 150.

При сопоставлении состояния капиллярной сети мозга и состояния сосудистой сети в мягкой мозговой оболочке после смерти животного с состоянием той и другой до опыта можно видеть, что изменения сосудов значительно больше выражены в мягкой мозговой оболочке. Это обстоятельство находит свое объяснение в том, что расположение сосудов в мягкой мозговой оболочке и внутри мозга не одно и то же. В мягкой мозговой оболочке сосуды лежат свободно в петлях соединительной ткани, а большие сосуды — в субарахноидальном пространстве. Сосуды связаны с мозговым веществом только отходящими от них радиальными артериями и обладают возможностью изменить свой просвет в значительно больших пределах, чем сосуды и капилляры внутри мозга. Последние находятся в окружении нервной ткани и тесно связаны с ней, благодаря чему просвет их зависит от состояния всего мозгового вещества в целом.

На рис. 153, а, б представлена капиллярная сеть мозгового вещества собаки, убитой перерезкой «спинного мозга под, продолговатым. При рассмотрении микрофотографии, снятой с препарата мозга, обработанного по методу Эроса, можно видеть, что участки, содержащие заполненные кровью сосуды, чередуются с участками, в которых капилляры не содержат крови. Соответственно этому при обработке мозга той же собаки предложенным нами методом импрегнации сосудистой стенки серебром можно убедиться в крайней неравномерности просвета капилляров, формирующих сеть в мозговом веществе. Заполненным кровью капиллярам на рис. 153, б соответствуют более широкие капилляры на рис. 153, а, капиллярам, не содержащим крови, на рис. 152, б — суженные капилляры на рис. 153, а.

Описанное распределение крови и просвет мозговых капилляров отчетливо указывают на зависимость диаметра мозговых капилляров от посмертных перемещений крови в мозгу. Перемещение крови в мозговых сосудах неизбежно должно иметь место потому, что после перерезки спинного мозга вплоть до остановки деятельности сердца кровь по сонным и частично по позвоночным артериям поступает в мозг. Благодаря этому на состоянии кровенаполнения мозговых капилляров отражаются-все посмертные явления.

Другими словами, количество крови в мозговых капиллярах и просвет их будут различными в зависимости от силы и продолжительности судорог, агональных сокращений сердца и т. д.

Рассмотрим другой вид умерщвления животного—смерть от задушения.

При удушении животного, например, сдавленней дыхательного горла, оно погибает не мгновенно, а через несколько минут. Но до смерти животное производит ряд огромных мышечных напряжений, сердечная деятельность его резко повышается. Происходит перераспределение крови в организме за счет сужения сосудов в одних областях и расширения в других; значительное расширение сосудов наблюдается в мозгу, где-оно распространяется на все сосуды к капилляры. Благодаря этому сглаживаются всякие неравномерности в просвете сосудов и капилляров, существовавшие даже длительно до задушения.

Необходимо также отметить, что при задушении резко повышается внутричерепное давление и происходит расширение всей сосудисто-капиллярной сети. После остановки сердечной деятельности повышенное внутричерепное давление спадает, и кровь в значительном количестве уходит из мозга, подчиняясь простым гемодинамичеоиим законам. Ясно, что при таком перемещении крови нельзя ожидать со стороны сосудов мозга какого-либо отражении функциональных состояний, существовавших у животного до смерти.

Как можно было видеть, характер смерти животного накладывает вполне определенный отпечаток на состояние капиллярной сети в мозгу. После предварительного рассмотрения влияния различных способов умерщвления животных на просвет капилляров мозгового вещества мы в наших опытах остановились на декапитации.

Мгновенная декапитация молодых животных, как правило, происходила без предварительной наркотизации. В тех же случаях, когда декапитация производилась взрослому, крупному по размерам животному, всегда вводилось небольшое количество наркоза для устранения влияния эмоциональных факторов в момент смерти животного.

Проделанные опыты позволили установить, что этот вид умерщвления у нормального животного всегда дает одну и ту же картину сосудисто-капиллярной сети мозга. Кроме того; декапитация всегда одним и тем же образом отражает состояние капиллярной сети мозгового вещества, вызванное перед смертью животного экспериментальным путем (отек, анемию, асфиксию и т. д.).

Таким образом, мгновенная декапитация устраняет в наибольшей степени возможность перемещения крови в сосудах вследствие отсутствия при данном роде смерти атонального периода. Вместе с тем она ставит мозг всех экспериментальных животных в одни и те же условия асфиксии, продолжающейся в течение 5—6 минут с момента декапитации до момента гибели нервных клеток. В пределах одного и того же мозга асфиксия в ранной мере распространяется на все отделы мозгового вещества и имеет своим следствием незначительное расширение всей сосудисто-калпиллярной сети мозга в целом. Расширение сосудистого русла в свою очередь приводит к удержанию значительной части крови, находившейся б момент смерти в сосудах мозга, благодаря чему при дакапитации не наблюдается истечения крови из мозговых отделов перерезанных сосудов.

Исследуя в нашей лаборатории изменения сосудисто-капиллярной сети спинного мозга в случаях декапитации различных животных, М. Е. Афанасьев отметил, что состояние сети в этом отделе центральной нервной системы значительно отличается от состояния ее в головном мозгу.

Капиллярная сеть головного мозга нормального животного после мгновенной декапитации характеризуется равномерностью просвета составляющих ее капилляров. В опийном мозгу, напротив, капилляры отличаются крайним разнообразием диаметров. Капиллярная сеть здесь включает в свой состав как расширенные, так и заметно суженные по сравнению с нормой капилляры.

Следует отметить также существование на всех уровнях спинного мозга кровоизлияний типа per diapedesis, никогда не наблюдающихся при декапитации в головном мозгу. Неравномерность диаметра капилляров, так же как и наличие кровоизлияний, объясняется тем, что в сосудистой сети продолговатого мозга происходит значительное перераспределение крови вследствие постепенного замедления сердечной деятельности и атональных сокращений мышц туловища и конечностей.

Особенно важно, чтобы декапитация была мгновенной и производилась острым инструментам. Известно, что перерезка спинного моега острым скальпелем вызывает повышение сухожильных рефлексов, перерезка же тупым инструментом - угасание их (Лапимоний и др.).

Отсюда ясно, что мгновенная декапитация не производит резкого Рис. 154. Капиллярная сеть мозгового вещества нормальной собаки.

Импрегнация по методу Б. Н. Клосовсвого. Увеличение 340.

Рис. 155. Капиллярная сеть мозгового вещества после нескольких попыток декапитировать животное (собака).

Импрегнация по методу Б. Н. Клосовского. Увеличение 340.

травмирующего действия, тогда как неудачное отделение головы после нескольких попыток будет иметь своим следствием перемещение крови в сосудах мозга. Соответственно с этим сосуды мозгового вещества будут обнаруживать неравномерность просвета.

Справедливость оказанного подтверждается при сравнении микрофотографий (рис. 154 и 155) между собой. На рис. 154 представлена капиллярная сеть собаки, убитой мгновенной дакапитацией, а на рис. 155 показана капиллярная сеть в той же извилине серого вещества у собаки, убитой после нескольких попыток. При сопоставлении характера капиллярной сети на этих рисунках видно, что в случае мгновенной декапита-ции капиллярная сеть Сформирована из капилляров одинакового диаметра, в то время как при условии повторных попыток отделения головы капилляры характеризуются неравномерностью диаметров, значительное количество их резко сужено.

Вторым моментам, необходимым для решения доставленных вопросов, как уже указывалось, является выбор соответствующих методик, выявляющих сосудистую сеть мозга.

Остановимся кратко на имеющихся способах получения сосудистой сети мозга.

Распространенным методом изучения сосудисто-капиллярной сети мозга является инъекция ее различными массами. В качестве инъициру-емых веществ могут быть использованы самые разнообразные массы и краски. Введение в сосудистое русло так называемых затвердевающих масс при последующей коррозии мозгового вещества позволяет получить слепки сосудов. В случае контрастности вводимых масс возможно изучение сосудистой сети мозга при помощи рентгенограмм.

Производится инъекция сосудисто-капиллярной сети мозга растворами различного рода красящих веществ. Некоторые из них, например, chlorosol sky blue, окрашивают содержащуюся в сосудах плазму крови, а также стенку сосудов, что позволяет выявить ее структурные особенности. Используется также инъекция сосудов мозга раствором туши. Во всех этих случаях изучение сосудисто-капиллярной сети мозга может быть предпринято как на больших кусках мозга (просветленного особыми способами), так и на гистологических срезах.

Обладая рядом преимуществ, метод инъекций, однако, имеет и существенные недостатки. Главнейшие из них заключаются в том, что для инъекции всегда требуется свежий, не фиксированный мозг, располагающийся в закрытом черепе, или по крайней мере в твердой мозговой оболочке. Совершенная инъекция, предпринимаемая с целью выявить всю сосудисто-капиллярную сеть мозга, требует тщательного выбора инъицируемой жидкости и силы давления при введении ее в сосудистое русло.

Необходимость соблюдения этих предосторожностей делает метод инъекции совершенным лишь в руках ограниченного круга опытных в этой области исследователей. Использование этого метода недостаточно опытными экспериментаторами часто приводит к представлению сосудистой сети мозга, не соответствующему действительности.

Большие трудности при использовании этого метода с особой отчетливостью выступают при попытках представить состояние сосудистой сети мозга до смерти по тем картинам, гистологическое или рентгенографическое изображение которых подлежит рассмотрению после инъекции.

В самом деле, слишком большая сила .инъекции может иметь своим следствием искусственное расширение сосудов и капилляров или даже раскрытие временно закрытых капилляров. Безусловно, это не может не исказить истинное состояние сосудисто-капиллярной сети мозга, существовавшее к моменту смерти. Напротив, при уменьшении силы инъекции будет наблюдаться частичное заполнение сосудистой сети мозга, в результате чего участии мозгового вещества, содержавшие суженные сосуды, могут оказаться совсем неинъицированными. Мы, со своей стороны, можем указать, что просвет капилляров на препаратах мозга, инъицированных какой-либо массой или краской, всегда меньше, чем просвет их на препаратах, обработанных методом импрегнации сосудистой стенки.

Усилие, прилагаемое экспериментатором при инъекции, может значительно сгладить или далее полностью затушевать те различия в диаметре капилляров в различных участках мозга, которые могли характеризовать их в силу того или иного физиологического состояния перед смертью. И с этой точки зрения требуют проверки результаты тех работ, авторы которых пытались установить отличие физиологических состояний, вызванных во время опыта в различных отдачах мозга, с помощью метода инъекции (см., например, работы Тзанга, 1936 и 1940 гг.).

Указанный метод непригоден также для выявления полностью закрытых и атрофирующихся капилляров. Ограничено применение этого метода и при экспериментальной работе с животной молодью. Сосудисто-капиллярная сеть мовга в своем развитии проходит длительный период диференцировки, прежде чем достигает того оформления, которое мы наблюдаем в мозгу взрослого человека и животных. У животных до 2—2'/2 месяцев постнатальной жизни в отдельных участках мозга можно еще обнаружить строящиеся капилляры. Эти строящиеся капилляры, так же как и не полностью канализированные капилляры, врастающие в кору на начальных этапах развития и формирования сосудистой сети мозга, не могут быть выявлены с помощью метода инъекции.

Ограниченными возможностями использования метода инъекции, а также большими техническими трудностями и вытекающими отсюда ошибками толкования нужно объяснить длительный литературный спор относительно строения сосудистой сети головного мозгa. Только погрешности этого метода могли так длительно удерживать представления об артериях мозга как конечных в анатомическом смысле. Лишь усовершенствование метода инъекции дало возможность получить сосудисто-капиллярную сеть мозга такой, какая она есть в действительности, т. е. в виде непрерывной сети, расположенной в трех плоскостях.

Таким образом, подводя итога рассмотрению пригодности метода инъекции для получения сосудистой сети мозга, можно сказать, что при соблюдении необходимых условий этот метод позволяет производить изучение анатомии сосудов мозга. Это значит, что при инъекции можно проследить характер сосудистой сети в том или другом участке мозга, соотношение между артериями и венами, способ ветвления тех и других (да и то с известным учетом той же силы инъекции), наличие или отсутствие анастомозов между сосудами.

Что же касается возможности отражения физиологических особенностей состояния сосудистой сети мозга животного, вызванных перед его смертью экспериментальным путем, то нужно указать на ограниченность применения метода инъекции для этой цели в силу почти полной не-адэкватности картин, получаемых после нее.

Следовательно, и в наше время гистологические методы окраски или импрегнации сосудистой сети имеют решающее значение при получении картины сосудистой сети, соответствующей (эквивалентной) действительному состоянию ее к моменту смерти животного.

Как уже указывалось, инъекция сосудов мозга различными веществами допускает лишь ограниченное суждение даже в таком чисто анатомическом вопросе, каким является вопрос об артериальном или венозном характере сосудов мозга, в зависимости от того, каким образом отходят боковые ветви от этих сосудов.

Известно, что классификация сосудов мозга на артерии и вены, предложенная Пфайфером (исследователем, чрезвычайно опытным в деле инъекции и изучения сосудов мозга), на основании особенностей ветвления их впоследствии была отвергнута. Необходимо было прибегнуть к гистологическому методу выявления стенки мозговых сосудов (М. Э. Мандельштамм, 1936; Кэмпбелл, 1938). чтобы показать ошибочность представлений Пфайфера и убедиться, что артерии Пфайфера по существу являются венами, а вены — артериями.

Немало попыток было сделано для получения сосудистой сети мозга с помощью гистологической обработки срезов фиксированного мозга.

Не останавливаясь на методах выявления различных элементов мозгового вещества и только попутно выявляющих сосуды, мы переходим к краткому перечислению методов, целью которых является специальное обнаружение тем или другим способом исключительно сосудов мозга.

<<< Назад Содержание Дальше >>>

medbookaide.ru