MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Клоссовский Б. Н. - Циркуляция крови в мозгу

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
<<< Назад Содержание Дальше >>>

Но вместе с тем Пфайфер нигде не указывает, какого размера сосуды относит он к категории анастомозов.

В критическом обобщении результатов работы Дюре Пфайфер отмечает, что Дюре, вследствие несовершенства технических приемов исследования, не мог установить отчетливого различия между капилляром и анастомозом.

Исходя из этого замечания, можно было бы предполагать, что сам Пфайфер считал сосуд анастомозом в том случае, если диаметр этого сосуда превышал размер капилляра.

Однако целый ряд положений в его работах говорит о том, что в понятие непрерывности сосудисто-капиллярной сети мозга Пфайфер вкладывает представление только о непрерывной связи посредством капиллярного русла и понимает под анастомозом сосуд капиллярного размера. Таков, например, чрезвычайно положительный отзыв Пфайфера о работе Лоренцо де Но (1927), который смог доказать непрерывность сосудистой сети в мозгу лишь в капиллярном русле, создающем для мозга действительно трехмерную сеть без начала и конца. Никакого упоминания о связях между сосудами коры иного порядка, чем капилляры, в работе Лоренцо де Но нет.

Результаты работы этого автора Пфайфер расценивал как полученное другим методом подтверждение своего мнения о непрерывном характере сосудистой сети в мозгу.

Соглашаясь с Лоренцо де Но, Пфайфер присоединяется к его представлениям о капиллярном характере связей в непрерывной сосудистой сети мозга и относит капилляр к категории анастомозов.

При изучении работ Пфайфера так и не удается установить, какого калибра сосуды этот автор имел в виду, когда говорил об анастомозах в артериальной части сосудистой сети мозга. Приведенный в этих работах иллюстративный материал не подтверждает его мнения о существовании анастомозов между артериями мозга, так как в результате ошибочной классификации сосудов мозга на всех микрофотографиях представлены не артерии мозга, а вены. Поэтому, если предположение Пфайфера об анастомозах и подтвердится, то оно будет относиться только к мозговым венам. Иначе говоря, несмотря на многократно повторяющиеся указания о наличии анастомозов в артериальной части сосудистой системы мозга, создающих ее непрерывность, Пфайфер смог показать непрерывностъ артериальной сети мозга, осуществляемую только посредством капиллярного русла.

Характерно, что проверка данных Пфайфера другими исследователями дала подтверждение его учения лишь в том, что в мозгу действительно нельзя выделить анатомически обособленных артерий, разветвляющихся и образующих капиллярную сеть в одной определенной, принадлежащей этой артерии области мозгового вещества. Последующие исследования показали, что все серое и белое вещество каждое в отдельности и взятые вместе объединяются капиллярной сетью, создающей подлинную непрерывность во всей сосудисто-капиллярной системе мозга. Наибольшие по размеру анастомозы, соединяющие артерию с артерией или вену с веной, представлены прекапиллярами. Следовательно, анастомозом является сосуд с диаметром в 10—14 м. Лишь в очень редких патологических случаях можно обнаружить соединение сосудов анастомозами более крупного калибра. Обычно анастомозы диаметром 10—14 м соединяют между собой артериолы и венулы (Кобб, 1931; Кэмпбелл, 1938; Вольф, 1938; Форбс, 1938, и др.).

Для понимания общих принципов кровообращения в мозгу большое значение имеют положительные доказательства или отрицание существования артерио-венозных анастомозов в сосудистой сети. Известно, что предположение о возможности перехода крови из артерий в вены по многочисленным коротким, связывающим их анастомозам было в свое время сделано Пфайфером, придававшим артерио-венозным анастомозам большое значение в распределении тока крови в мозгу.

Однако в последовавших работах, ставивших своей задачей изучение анатомических основ мозгового кровообращения, наличие артерио-веноз-ных анастомозов в сосудистой сети мозга подтверждено не было (Венст-лер, 1936; Форбс, 1938; Вольф, 1938; Кэмпбелл, 1938; Шаррер, 1940; Б, Н. Клосовский, 1942, и др.).

На основании результатов ряда работ сотрудников руководимой нами лаборатории мы можем вполне определенно утверждать, что сосуды коры и белого вещества объединены в одно целое и представляют собой непрерывную сеть. В сплошной сети сосудов нельзя выделить ни отдельных артерий, питающих какой-либо определенный участок мозгового' вещества, ни отдельных вен, собирающих кровь с одной принадлежащей ей области.

Непрерывность сосудистого русла создается сосудами капиллярного, или самое большее, прекапиллярного размера, формирующими подлинную сеть, расположенную в трех плоскостях. Сеть капиллярных сосудов является основой, объединяющей кровообращение не только отдельно взятых серого и белого вещества, но того и другого совместно с кровообращением всех подкорковых образований в одно целое.

Единство мозгового кровообращения, следовательно, осуществляется посредством капиллярного русла. Лишь очень редко в сосудисто-капиллярной сети мозгового вещества можно обнаружить анастомозы крупнее прекапиллярного размера, связывающие артерию с артерией и вену с веной вне капиллярного русла. При этом анастомозы чаще соединяют вену с веной, чем артерию с артерией (рис. 76, а). В полном соответствии с данными некоторых исследователей мы отмечаем, что анастомозы встречаются в венозной части сосудистой сети мозга чаще, чем в артериальной, и среди венозных сосудов белого вещества чаще, чем среди венозных сосудов коры.

На многих сериях препаратов, обработанных несколькими различными методами, выявляющими сосудисто-капиллярную сеть, мы никогда не наблюдали непосредственных связей между артерией и веной, т. е так называемых артерио-венозных анастомозов.

На основании результатов изучения большого материала мы пришли к выводу, что связи артерии с артерией и вены с веной крупнее прекапиллярного размера вне капиллярной сети должны быть отнесены к редким исключениям. Наличие их является результатом сохранения в том или ином участке сосудистой сети мозга эмбрионального строения, характерного для самого раннего этапа ее организации.

При разборе фактических данных, полученных при исследовании сосудистой сети мозга в процессе ее развития, мы уже видели, что определенные стадии развития дают нам возможность наблюдать совершенно особое расположение сосудов в стенке мозгового пузыря. Сосуды, прорастающие в матрикс, идут через поперечник мозгового пузыря параллельными стволами, соединяющимися между собой поперечными сосудами, почти такого же размера, как объединяемые ими стволы. Характерно, что преобразование сосудистого дерева и возникновение капиллярных сетей происходят именно там, где наличие нервных клеток вызывает наибольшую потребность в кислороде и питательных веществах. Так, например, на стадии восьмислойной стенки мозгового пузыря капиллярные сети располагаются там, где наблюдается наибольшее скопление клеточных элементов (в матриксе, коре, полосатых слоях). В других же слоях (в промежуточном и переходных), в которых сосудистая сеть в это время Рис. 76, а к б. Анастомозирование ветвей мозговых вен между собой в белом веществе и артерий в ретикулярной субстанции.

Импрегнация по методу В. И. Клосовского. Увеличение 100.

а — микрофотография с препарата мозга собаки, погибшей от острого отека через несколько часов после закрытия левой средней мозговой артерии. Представлено белое вещество области, расположенной между передней и средней мозговой артерией; (анастомозирование вен); б — анастомозирование ветвей артерий ретикулярной субстанции продолговатого мозга между собой.

Рис. 76, в и г. Анастомозирование ветвей мозговых вен между собой в белом веществе и артерий ретикулярной субстанции.

в — анастомозирование ветвей артерий, вступающих в ретикулярную субстанцию продолговатого мозга с одной поверхности; г — анастомозирование ветвей артерий, вступающих в ретикулярную субстанцию продолговатого мозга с противоположных поверхностей. Микрофотографии б, в, г, сняты с препаратов продолговатого мозга, сосудистая система которого была инъицирована тушью. Увеличение 20. Анастомозы (А) указаны стрелкой.

находится на более ранних стадиях своего развития, капиллярные сети почти или совсем не развиты. В этих слоях параллельно следующие через стенку пузыря крупные сосуды соединены поперечными анастомозами.

Таким образом, непосредственная связь артерии с артерией или вены с веной сосудом крупного калибра представляет собой более примитивный тип соединения, чем капиллярная сеть. Если принять во внимание, что поздно оформляющие свою сосудисто-капиллярную сеть слои поперечника полушарий в окончательно сформированном мозгу соответствуют областям расположения белого вещества, то становится понятным, почему анастомозы в мозгу взрослого животного чаще встречаются в белом веществе, а не в коре.

Таким образом, изучение организации сосудисто-капиллярной сети мозга в онтогенезе определенно указывает, что анастомозы крупнее прекапиллярного размера представляют собой не что иное, как отражение эмбрионального характера строения сосудистой сети.

Интересно, что в составе сосудистой сети отделов головного мозга, филогенетически более старых, чем кора полушарий, можно отметить наличие анастомозов крупнее капиллярного размера. С подобного рода явлениями встретились Е. Н. Космарская и Е. Г. Балашева (1950) при изучении особенностей кровоснабжения ретикулярной субстанции продолговатого мозга. Просматривая серии препаратов мозга кошек и собак, сосудистая сеть которых была инъицирована тушью, трипановой синью или импрегнирована серебром по методу Б. Н. Клосовского, эти авторы установили, что артерии ретикулярной субстанции широко анасто-мозируют между собой. Анастомозы различного калибра, по своей величине в несколько раз превосходящие размер прекапилляра, соединяют ветви как одной и той же (рис. 76, б), так и различных артерий между собой (рис. 76, в, г).

В тех случаях, когда подлинные анастомозы соединяют ветви различных артерий между собой, можно различать два типа. В первом из них, как это можно видеть из рис. 76, в, анастомозом связаны ветви двух артерий, вступающих в вещество продолговатого мозга с какой-либо одной поверхности и идущих поэтому друг возле друга в одном направлении. Во втором типе соединенными анастомозами оказываются ветви артерий, вступающие в продолговатый мозг с разных поверхностей его и направляющихся, следовательно, навстречу друг другу. Так, на рис. 76, г, приведенном для иллюстрации вышесказанного, можно видеть большое количество анастомозов между ветвями двух крупных артерий. Одна из них вступила в вещество продолговатого мозга с вентральной, другая — с дорзальной поверхности его.

Характерно, что соединение сосудов крупными анастомозами встречается и в патологических случаях. С подобными явлениями мы столкнулись при изучении сосудистой сети мозга людей, при жизни страдавших болезнью Дуана. Рис. 77 показывает своеобразную структуру сосудистой сети серого вещества в случаях болезни Дуана. Можно видеть, что сосуды коры, расположенные параллельно друг другу, соединяются поперечными анастомозами по тому же типу, как это отмечается на ранних стадиях организации сосудистой сети.

Мы пока не имеем возможности различать артерии и вены среди сосудов, врастающих в стенку мозгового пузыря на самых ранних стадиях развития. Предпринятые в этом направлении работы, безусловно, прольют свет на многие неясные сейчас стороны мозгового кровообращения и, в частности, выясняет характер взаимодействия артериальной и венозной сосудистой сети на самых первых этапах ее организации.

Вполне возможно, что на этих этапах развития может иметь место непосредственное соединение артерий с венами, обеспечивающее быстрый отток крови, содержащей продукты обмена веществ клеток матрикса, но изучение этих самых ранних стадий развития и является наиболее технически трудным. К сожалению, в настоящее время мы не могли приготовить препараты, рассмотрение которых позволило бы проследить эти ранние стадии организации сосудисто-капиллярной сети в мозгу, так как на имеющихся в нашем распоряжении препаратах представлены не тольРис. 77. Структура сосудисто-капиллярной сети в коре при болезни, Дауна.

Микрофотография с препарата, окрашенного по методу Эроса. Увеличение 100.

ко артерии и вены матрикса, но и объединяющая их капиллярная сеть. Поэтому следует признать, что имеющиеся данные о развитии сосудисто-капиллярной сети в онтогенезе пока недостаточны для того, чтобы представить себе возможность существования артерио-венозных анастомозов в мозгу взрослого животного. Непосредственные связи артерий и вен между собой, если они встречаются, должны рассматриваться как чрезвычайно редкая аномалия строения сосудистой сети мозга.

Отсутствие в мозгу взрослого животного артерио-венозных анастомозов подтверждают также опыты с раздельной инъекцией артериальной и венозной части сосудистого русла мозговой ткани. Раздельная инъекция только потому и возможна, что в нормальных условиях не существует непосредственного тока крови из артерий в вены, помимо капиллярной сети.

Трудно также представить себе наличие артерио-венозных анастомозов в мозгу взрослого животного и с физиологической точки зрения. Действительно, в других органах с постоянно меняющейся циркуляцией крови, в зависимости от потребностей ткани или всего органа в целом в каждый данный момент, артерио-венозные анастомозы могут играть опреРис. 78. Сравнительная диференцировка артериальной и венозной сети мягкой мозговой оболочки на различных стадиях онтогенетического развития человека. а — венозная сеть плода длиной 30 см; б — артериальная сеть плода длиной 30 см Рис. 78. Сравнительная диференцировка артериальной и венозной сети мягкой мозговой оболочки на различных стадиях онтогенетического развития человека.

в — венозная сеть плода длиной 36 см; г — артерильная сеть плода длиной 36 см, Микрофотографии с гиперемированной мягкой мозговой оболочкой плодов, окрашенной по методу Эроса. Увеличение 50, деленную роль в кровообращении [Е. Кларк (E.Clark), 1938]. В мозговой же ткани процессы жизнедеятельности требуют постоянного тока крови, при котором существование артерио-венозных анастомозов утрачивает всякий смысл. При наличии их в сосудистой сети мозга они являлись бы обходным путем для крови, благодаря чему кровь не заполняла бы всего капиллярного русла. Между тем нервные клетки получают кислород и питательные вещества из крови, циркулирующей именно по капиллярам, и таким образом нормальная жизнедеятельность нервных клеток зависит от постоянства тока крови в капиллярном русле. Следовательно, наличие артерио-венозных анастомозов в сосудистой сети мозга должно было бы нарушить постоянство тока крови в сосудистой сети и тем самым служить причиной нарушений обмена в нервных клетках.

Выше мы уже отмечали, что артерии мозга по сравнению с венами являются сосудами более диференцированными. Артерии меньше ветвятся, чем вены. Основная масса крупных боковых ветвей артерий обычно сосредоточивается на определенном уровне, тогда как крупные ветви могут вливаться в вену по всему ее ходу. Благодаря этому обстоятельству область мозгового вещества охватывается веной в большей степени, чем снабжающая эту область артерия. Большая область охвата и большая густота венозной капиллярной сети создают большие возможности перемещения крови в ней по сравнению с перемещением крови по артериальной капиллярной сети.

Более близкое к эмбриональному строению обнаруживает и венозная сеть мягкой мозговой оболочки. На рис. 78 для сравнения приведены микрофотографии венозной и артериальной сети мягкой мозговой оболочки у плодов человека 30 и 36 см длины. Эти микрофотографии подтверждают предположение о сохранении венозной сетью мозга на каждой стадии развития более примитивного строения по сравнению с артериальной, в связи с чем становится понятным, почему анастомозы между венозными стволами встречаются чаще, чем между артериями.

Тип распределения сосудов в виде непрерывной сосудисто-капиллярной сети является характерным не только для мозга человека и лабораторных животных. Подобное же строение сосудистой системы в мозгу наблюдается у животных, принадлежащих к самым различным классам и даже типам животного мира. В качестве примера можно указать на мозговые ганглии каракатицы, где, по данным Кахаля, отмечается наличие сетеобразной структуры сосудов. Такое же расположение сосудов обнаруживается в мозгу примитивных позвоночных миксин, рыб (за исключением акул), бесхвостых амфибий, рептилий (исключая ящериц), однопроходных [Сандерланд (Sunderland), 1941], а также всех плацентарных млекопитающих.

Вместе с тем сетеобразная структура сосудов в мозгу животных и человека не является единственным типом организации кровоснабжения его.

При исследовании анатомического строения сосудистой системы в мозгу lamprey, petromyzon, хвостатых амфибий [Крэги (Cralgie), 1940], ящерц (Крэги, 1941), сумчатых (Вислоки, 1937, 1939; Крэги, 1938; Сандерланд, 1941) было обнаружено весьма своеобразное и характерное расположение сосудов в мозговом веществе. Особенно отчетливо выраженным и типичным оно оказалось в мозгу кенгуру и опоссума, которые и подверглись наиболее тщательному изучению.

Характерной особенностью кровоснабжения опоссума (так же как и всех других животных, относящихся к этому типу) является расположение сосудов во всех органах тела и в том числе в мягкой мозговой оболочке в виде непрерывной сети. Однако сосуды, проникающие из мягкой мозговой оболочки в мозговое вещество, имеют уже совершенно своеобразный характер.

Мы уже указывали, что у человека и животных с типичной для них сетеобразной структурой сосудов в мозгу нельзя отметить какой-либо закономерности в порядке вхождения артерий в мозговое вещество. Артерии проникают в мозг то совсем рядом друг с другом, то отделены одна от другой большим расстоянием. Никогда не удается проследить, чтобы артерия и вена имели вход и выход из мозговой субстанции в одном участке. В мозговом веществе артерии также, как правило, никогда не сопровождаются венами, а капиллярные сети той и другой обнаруживают сложное взаиморасположение.

Рис. 79. Различные по форме конечные артерия в мозгу опоссума (по Вислоки).

Иные соотношения наблюдаются в мозгу опоссума. Участок поверхности мозга, в котором артерия проникает в мозговое вещество, располагается в непосредственной близости с участком, на котором из мозга выходит соответствующая данной артерии вена. В мозговом веществе артерия и вена идут друг возле друга, причем каждой ветви артерии вплоть до капилляров точно соответствует такая же по форме ветвь вены. На рис. 79, взятом нами из работы Вислоки (1939), показаны различные по сложности парные конечные сосуды, располагающиеся в мозгу опоссума.

Отсутствие связей между каждой такой парой сосудов превращает каждую из них в анатомическую и функциональную единицу. Таким образом, здесь имеется настоящая конечная артерия, закупорка которой будет иметь следствием выпадение мозгового вещества во всей области распределения ее разветвлений. Для характеристики расположения в мозгу опоссума конечных артерий и характера выпадения ткани при закрытии просвета какой-либо артерии интересны эксперименты Шаррера (1939).

Через 48 часов после инъекции спор ликоподия в сонную артерию опоссума Шаррер наблюдал в зернистом слое мозжечка распад и исчезновение нервных клеток, располагавшихся в радиусе 25 м от закрытой артерии.

На рис. 80 видно, что каждая артерия мозгового вещества опоссума обеспечивает кислородом и питательными веществами вполне определенную область. В соответствии с этим одна пара сосудов в мозгу опоссума располагается от другой на равном расстоянии, не превышающем 50 м. в совершенно правильном порядке.

Таким образом, в мозгу опоссума и других животных, мозг которых снабжается кровью также по сосудам конечного характера, суще ствует ограниченное количество капилляров, необходимое для жизнедеятельности мозговой гкани.

Характерно, что, несмотря на сетеобразное распределение артерий на поверхности мозга опоссума, врастание артерий в мозг на самых ранних стадиях эмбриогенеза происходит уже по типу конечных петель. На рис. 81 представлено врастание артерий в продолговатый мозг эмбриона опоссума длиной 14 мм. Отчетливо видно, как из мягкой мозговой оболочки в стенке мозговых пузырей прорастают отдельные сосудистые единицы, совершенно обособленные, не анастомозирую-щие между собой.

<<< Назад Содержание Дальше >>>

medbookaide.ru