MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Гуттман Б., Гриффите Э. и др. - Генетика

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<<< Назад Содержание Дальше >>>

Добавленный в геном ген называется трансгеном, а организм, полученный в результате такой операции, называется трансгенным организмом. В популярной литературе этот процесс известен под названием генетическая модификация, но это не совсем точное определение, так как полученные в результате традиционной селекции организмы также в какой-то степени подвергаются генетической модификации. Более точные термины «генетически модифицированные организмы» и «генетически модифицированные продукты» относятся исключительно к трансгенным организмам.

Ключевое различие между трансгенными организмами и организмами, полученными в результате селекции, состоит в том, что трансгенная ДНК может быть перенесена практически из любого другого организма, и это невероятно увеличивает возможности комбинирования признаков. При традиционной селекции желательный аллель получали от особей того же или близкородственного вида. Теперь же, если это необходимо в каких-то целях, гены рыб, например, можно перенести в растение, а гены бактерий — в млекопитающее. Таким образом, возможности преобразования ограничены теперь исключительно воображением, и многих это заставляет задуматься, особенно если знать, насколько часто воображение в истории человечества оказывало поистине разрушающее воздействие.

Трансгенная модификация привлекательна еще и своей скоростью. Новую ДНК можно добавить в считанные часы или дни. Генетически модифицированный организм обычно вырастает в течение нескольких недель или месяцев, после чего он готов для опытов или потребления. При традиционных методах селекции новый ген внедряется через несколько поколений, и отбор длится порой десятки лет.

Трансгенез — очень мощное орудие. С его помощью можно сделать сельское хозяйство более выгодным и эффективным, улучшить качество пищи, например, сделать свинину или говядину менее жирными. Можно увеличить количество пищи, получаемой с одного растения или животного: корова может давать значительно больше молока, курица — больше яиц, а пшеничный колос — больше зерна. Ряд исследователей занимается тем, чтобы сельскохозяйственные растения получили собственные гены для фиксации азота. Азот, доля которого в воздухе составляет 79%, одна из самых важных составляющих белков и нуклеиновых кислот. Однако растения способны усваивать только фиксированный азот, то есть находящийся в молекулах аммиака или нитратов. Аммиак образуется в результате химической реакции ЗН2 + N2 = 2NH3, как правило, при помощи фиксирующих азот бактерий. Эти бактерии часто обитают в корневых клубеньках бобовых, таких как бобы и горох. Промышленным способом также можно получить аммиак, но для такого рода фиксации требуется огромное количество энергии. Кроме того, внесение химических удобрений в почву портит экосистему и загрязняет окружающую среду. Традиционно фермеры удобряли землю, выращивая сначала на ней азотфиксирующие растения, а затем перепахивая ее под другую культуру. Но ведь так заманчиво получить растения с собственными генами фиксации азота (nif)! В бактерии Klebsiella pneumoniae гены nif образуют скопления, и их вполне можно перенести в клетки сельскохозяйственных растений.

Растения можно также сделать устойчивыми к насекомым-вредителям или грибковым заболеваниям. Из-за насекомых фермеры ежегодно теряют значительную часть урожая. Некоторые корпорации уже проводили эксперименты по внедрению генов устойчивости к насекомым в некоторые растения, такие как кукуруза. При этом они использовали вырабатывающие токсин Bt-гены, полученные от бактерии Bacillus thuringensis. Растения, модифицированные таким образом, имеют свою защитную систему против насекомых. Другой подход состоит в том, чтобы модифицировать растения при помощи некоторых генов бактерий, устойчивых к гербицидам, особенно к глифосфату (торговое название Roundup). Тогда фермеры получат возможность обрызгать свои поля этим гербицидом и уничтожить все сорняки, не затрагивая при этом культурные растения. Таким образом сельское хозяйство станет более эффективным. Но все эти способы имеют и обратную сторону, как мы увидим в гл. 13. Они угрожают здоровью человека, стабильности экосистемы, а также самому сельскому хозяйству.

При помощи трансгенных методов можно улучшить питательную ценность растений: трансгенный «золотой рис», например, отличается повышенным содержанием витамина А. Гены устойчивости к соли позволяют выращивать растения на неблагоприятной почве с высоким содержанием соли, например некоторые виды помидоров в Израиле. В некоторых районах, тех, что расположены близко к морю, содержание соли в почвах естественным образом повышенное. Но кроме этого, засоление почвы представляет собой угрозу по всему миру, поскольку концентрация соли в почве увеличивается в результате экстенсивной ирригации. Выведение растений, устойчивых к соли, представляет собой одну из целей промышленной генетики наряду с выведением растений, устойчивых к жаре, холоду и разнообразным минеральным веществам.

Некоторые исследователи пытаются вывести растения для синтеза вакцин. Это могло бы в большой степени облегчить вакцинацию населения, поскольку человеку было бы достаточно всего лишь съесть какой-нибудь продукт. Такой метод вакцинации мог бы значительно сократить расходы, ведь сейчас много средств тратится на то, чтобы подготовить вакцину к длительному хранению, доставить ее на место и нанять врачей для ее инъекции.

Трансгенные микробы представляют собой потенциальные «фабрики» по производству различного рода белков. В настоящее время ген человеческого инсулина внедрен в некоторые бактерии, которые служат дешевым источником этого средства в качестве альтернативы инсулину свиней или коров, который использовали прежде.

В наше время основаны частные компании для осуществления разнообразных трансгенных проектов. Транснациональные корпорации, такие как «Доу Кемикал», «Инко», «Монсанто» и «Эли Лилли» вкладывают многомиллионные средства в такие компании, как «Сетус» (Беркли) и «Байоджин» (Швейцария), обещающие создать технологию, альтернативную микроэлектронике. Порой кажется, что единственными ограничениями в этой области являются воображение и степень талантливости исследователей. Перед недавними местными выборами в Онтарио власти провинции заявили о многомиллионном проекте развития биотехнологий, которые, судя по ожиданиям, должны обеспечить значительный прорыв в области медицины, горного дела, лесного и сельского хозяйства, экологии и энергетики. Помимо всего прочего, ожидается появление новых азотфиксирующих растений, а также бактерий, которые очищали бы загрязнения, выделяли минералы и вырабатывали алкоголь из промышленных отходов.

Генная терапия

Среди разнообразных способов применения трансгенных технологий особое место занимает генная терапия. Если можно модифицировать растительные и животные организмы, то что мешает применить те же методы для лечения наследственных болезней? Технология рекомбинантных ДНК с самого начала подавала надежду на исправление генетических нарушений посредством замены дефектного гена нормальным. Как только был выделен ген, ответственный за развитие кистозного фиброза (CFTR), и его функция была подтверждена, начались разработки средств лечения пациентов с кис-тозным фиброзом методами генной терапии. Сначала нужно было определить, можно ли из отдельной клетки выделить нормальный ген CFTR, и это удалось при помощи вируса коровьей оспы. В вирус был внедрен ген РНК-полимеразы фага Т7, а затем клон гена CFTR был вставлен в плазмиду после промотора, распознаваемого только этой полимеразой. Когда вирус и плазмиду внедряли в клетки пациентов, страдающих кистозным фиброзом, эти клетки, в которых прежде отсутствовал регулятор транспорта необходимых ионов, приобретали нормальный механизм регуляции.

В настоящее время многие центры генной терапии чаще всего проводят исследования со взрослыми пациентами, страдающими именно кистозным фиброзом. В их лабораториях испытываются десятки различных векторов, но ни один из них пока не обладает всеми желательными характеристиками. В некоторых случаях гены переносятся посредством бронхоскопа — прибора для исследования легких или, как в данном случае, для внедрения в них нужного материала. В других центрах предпочитают вводить генетический материал в нос или околоносовые пазухи, потому что они более доступны и ошибки здесь не столь непоправимы.

Рональд Кристал и его коллеги по Корнеллскому университету первыми заметили, что аденовирус может переносить ген CFTR в легкие, где тот и выражается. Так как сам вирус в человеческий геном не встраивается, необходимо регулярное введение доз, но, к сожалению, многократное использование этого метода приводит к снижению его эффективности и развитию воспалительных процессов. В качестве контрмеры аденовирусную ДНК постоянно укорачивают, надеясь получить вектор без продуктов вирусного генома, в котором бы остались только гены, необходимые для упаковки и переноса ДНК CFTR. Предполагается, что такой вектор не будет распознаваться иммунной системой, и многократное введение доз не снизит эффективности метода.

В качестве потенциального вектора рассматривается небольшой аденоассоциированный вирус (AAV), потому что в отличие от аденовирусов он не вызывает заболевания. Однако он не так хорошо переносит ген. Для улучшения его как вектора проводятся эксперименты по облучению и химической модификации. В других лабораториях экспериментируют с ретровирусами-переносчиками CFTR, так как эти вирусы естественным образом встраивают свой геном в клетки хозяина.

Правда, при этом остается нерешенным вопрос, избавит ли нормальный синтез белка CFTR от бактериальных инфекций легких, на которые приходятся 90% заболеваемости и смертности. Есть все основания надеяться, что генная инженерия успешно справится с этой задачей. Белок в легких, функция которого заключается в уничтожении чужеродных клеток, не активизируется при повышенной концентрации соли (а именно этим и характеризуется кистозный фиброз); но как только CFTR начинает вырабатывать свой продукт, концентрация соли понижается, и белок активизируется.

В настоящее время разрабатываются методы генной терапии при лечении других наследственных болезней. Так, при нарушениях функции кровяных клеток их можно преобразовывать в культуральной среде и вводить в костный мозг пациента, в их естественную среду. Несомненно, некоторые из разработок увенчаются успехом и в течение последующих лет станут обычной медицинской практикой. Все приведенные факты — примеры так называемой соматической генной терапии, то есть они применяются по отношению к телу {соме) пациента в надежде, что получится достаточное количество клеток, способных выполнять нормальные функции. Пациент может выздороветь, но риск передачи нежелательных генов потомству все равно остается, потому что половые клетки таким образом не модифицируются. Терапия половых клеток нацелена на модификацию всего организма, включая и железы, вырабатывающие половые клетки. Простейший (теоретически) способ состоит в том, чтобы модифицировать оплодотворенную яйцеклетку, введя в нее подходящий трансген. Такого рода процедура уже возможна и успешно проведена на опытных животных, например на мышах. Но можно ли ее применить по отношению к человеку и, главное, стоит ли? Это серьезный этический вопрос, и некоторые поборники нравственности утверждают, что если соматическая генная терапия этична, то играть с человеческим геномом и изменять генный набор наших потомков недопустимо, поэтому подобные процедуры следует запретить.

Геномика — изучение всего генома

Последние достижения в области секвенирова-ния и развитие технических средств для обработки большого количества клонов в библиотеке генов позволили ученым исследовать сразу весь геном организма. Сейчас определены полные последовательности многих видов, в том числе большинства так называемых модельных генетических организмов, таких как Е. coli; круглого червя Caenorhabditis elegans; и, конечно, классического объекта генетики, плодовой мушки Drosophila melanogaster. В 1990-х годах, несмотря на ряд неурядиц и разногласий, был начат проект по исследованию человеческого генома («Геном человека»), средства на который выделил Национальный институт здоровья. В феврале 2001 года большая группа исследователей во главе с Дж. Крэй-гом Вентером из частной лаборатории «Селера Дже-номикс» сделали заявление о предварительной расшифровке человеческого генома. Результат их работы был опубликован 16 февраля 2001 года в журнале «Science».

Другая версия, которую представила группа из Международного консорциума по секвенированию человеческого генома, была напечатана 13 февраля 2001 года в журнале «Nature».

Временем зарождения геномики можно считать середину XX века, когда генетики составили карты всех хромосом модельных организмов, основываясь на частоте рекомбинаций (см. гл. 8). Однако на этих картах были показаны лишь те гены, для которых были известны мутантные аллели, и поэтому полными такие карты назвать нельзя. Полное сек-венирование ДНК позволяет выявить местонахождение всех генов организма, а также установить последовательность оснований между ними.

Геномика делится на структурную и функциональную. Структурная геномика ставит целью выяснить, где именно в хромосомной ДНК расположены те или иные гены. Компьютерные программы распознают типичные для генов начала и концы, отбирая те последовательности, которые, вероятнее всего, и являются генами. Такие последовательности называют открытой рамкой считывания (open reading frame, OFR). Те же компьютерные программы могут опознавать и типичные интроны в OFR-nocледовательностях. После того как интроны из потенциального гена вычленены, по оставшемуся коду компьютер определяет последовательность аминокислот в белке. Затем эти потенциальные белки сравнивают с теми белками, функции которых уже известны и последовательности которых уже занесены в базу данных. Благодаря такому роду программ был установлен так называемый эволюционный консерватизм: то, что для большинства генов в разных организмах имеются схожие гены. С позиций эволюционного развития такое сходство объяснимо: если белок какого-то одного биологического вида хорошо приспособлен для своих функций, то его ген передается в том же виде или с небольшими изменениями к видам, происходящим от начального. Эволюционный консерватизм позволяет опознавать гены, родственные данному гену в других организмах. Сравнив полученный ген с уже известными, зачастую можно определить и его функцию, обязательно проверив ее в последующих экспериментах.

После определения всех потенциальных генов приступают к составлению генетической карты. Генетическая карта человека — довольно запутанная и пестрая диаграмма, так как каждый ген отмечают определенным цветом в зависимости от его функции, устанавливаемой в сравнении с другими известными генами. Большинство генов человека, как и вообще гены всех эукариот, имеют большие интроны. По приблизительным оценкам, среди опубликованных последовательностей около трети или четверти приходится на интроны. Любопытно, что только около 1,5% всего генома человека (около 2,9 х 109 пар оснований) содержат последовательности (экзоны), кодирующие белки. Кроме того, похоже, что эта ДНК содержит только 35 000—45 000 генов, а это меньше предсказанного. Нам еще предстоит понять, как относительно малое количество генов кодирует такой сложный организм.

От двух третей до трех четвертей генома приходится на обширные участки между генами, что тоже представляет собой разительный контраст с геномом бактерий. Эти промежутки, конечно же, не пусты, но их содержание до сих пор во многом остается загадкой. Большое количество последовательностей между генами приходится на долю повторяющейся ДНК, то есть на многократно повторяющиеся последовательности длиной от нескольких сотен до многих тысяч нуклеотидов. Одни типы повторяющейся ДНК собраны в скопления, другие разбросаны по всему геному. Большинство повторяющейся ДНК не функционально, но она произошла из последовательностей, которые, вероятно, имели какую-то функцию. Большой класс повторяющейся ДНК произошел от транспозонов, то есть сегментов ДНК, способных перемещаться по геному. Такого рода последовательности еще называют мусорной ДНК, но, скорее всего, мы еще не знаем о выполняемых ими важных функциях. Другой класс повторяющейся ДНК охватывает неактивные геномы вирусов, которые когда-то паразитировали в клетках человека и вставили свои последовательности в человеческие хромосомы.

Количество копий повторяющейся ДНК у разных людей неодинаково, поэтому их можно использовать для установления личности, в том числе и в судебной медицине.

Функциональная геномика — это исследование функций генов на уровне всего генома. Хотя потенциальные гены можно определить по сходству с генами, выполняющими известные функции в других организмах, все догадки следует проверять на примере изучаемого организма. В некоторых модельных организмах, например в пищевых дрожжах, можно систематически отключать функцию генов по очереди. Выключение гена происходит посредством замены его функциональной формы стертой формой на особом векторе. Затем получают штамм с выключенным геном и оценивают его фенотип. В ходе продолжающейся программы по анализу генома пищевых дрожжей по очереди было выключено несколько тысяч генов.

Другой метод функциональной геномики заключается в том, что изучают механизм транскрипции на уровне всего генома. Данный метод основан на предположении, что большинство биологических явлений представляют собой сложные процессы с участием многих генов. Особый интерес у исследователей вызывают процессы, связанные с развитием организма, о которых мы упоминали в гл. 11. Если транскрипцию генов изучать в разных условиях роста, то можно составить представление о полных генетических путях развития организма.

Но как можно изучать транскрипцию на уровне всего генома? Опять-таки в этом ученым помогают новые технологии. ДНК каждого гена в геноме или некоторой части генома помещают на поверхности небольших стеклянных пластин, расположенных по порядку. Потом их подвергают воздействию со стороны всех видов мРНК, обнаруженных в клетке данного организма. ДНК на пластинках получают двумя способами. При одном способе все мРНК подвергаются обратной транскрипции, чтобы получить короткие комплементарные молекулы ДНК, соответствующие одному гену. При другом способе гены (или части генов) синтезируются по одному основанию за раз на определенных участках пластин. Синтез осуществляют роботы, открывающие и закрывающие поверхность стекла в определенном порядке. Пластинки с геномом многих организмов можно приобрести в химических компаниях.

Для изучения механизма транскрипции все мРНК определенной стадии развития помечают флуоресцентной меткой и распределяют их по поверхности пластин. Эти мРНК прикрепляются к соответствующим им ДНК, и их можно опознать по светящимся участкам. Поскольку положение каждой ДНК отдельного гена на пластинах известно заранее, компьютер определяет, какие гены транскрибируются на данной стадии развития.

Итак, с помощью этих и других технологий генетики начинают выяснять общие модели организации живого с функциональной и структурной стороны. Для обработки громадного количества информации появилась особая ветвь науки — биоинформатика. Ближайшие десятилетия обещают стать временем поистине великих открытий.

Глава тринадцатая. Генетик в роли доктора франкенштейна

В глазах современной общественности генетики часто ассоциируются с образом героя романа Мэри Шелли «Франкенштейн», безумно увлеченного своей работой и создавшего ужасное чудовище. Генетиков обвиняют в том, что они во что бы то ни стало, невзирая на финансовые траты, стремятся приоткрыть завесу над тайнами жизни, создают вредные продукты и даже нарушают мировой порядок. Того и гляди, жители всемирной деревни, уподобившись своим собратьям из романа Шелли, вооружатся метафорическими вилами и пойдут на штурм замка науки, топча по дороге поля генетически модифицированных продуктов и выкрикивая лозунги протеста против «новой генетики».

<<< Назад Содержание Дальше >>>

medbookaide.ru