MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Жуков В. В., Пономарева Е. В. - Физиология нервной системы

1 2 3 4 5 6
<<< НазадСодержаниеДальше >>>

Рис. 12. Схема развития длительной депрессии [3]:

Слева - главный путь действия глутамата на A/K рецепторы, открытие каналов которых вызывает ВПСП дендритного шипика. Справа - серия ПД создает более высокую концентрацию глутамата, который активирует не только A/K-рецепторы, но и метаботропные Глу- рецепторы. Последнее вызывает высвобождение связанного с G-белком инозитолтрифосфата (ИТФ) из липидной мембраны, который в свою очередь способствует высвобождению Ca2+ из внутриклеточных депо. Повышение при этом концентрации Ca2+ активирует NO-синтазу, а образующаяся NO - гуанилатциклазу (ГЦ). Синтезирующийся цГМФ действует как внутриклеточный медиатор и активирует Г-киназу, фосфорилирующую A/K канал, который при этом десенситизируется. Вследствие этих событий вызванный глутаматом ток через A/K канал уменьшается - наступает длительная депрессия ВПСП.

Многообразие медиаторных систем. Принцип Дейла: один нейрон, как правило, синтезирует и использует один медиатор во всех своих терминалях. Возможно использование нейроном нескольких медиаторов (комедиаторы), но, по-видимому, в одном и том же сочетании. Как следствия принципа Дейла можно рассматривать следующие положения:

  1. Знак синаптического действия определяется не медиатором, а свойствами рецепторов на постсинаптической клетке.  

  2. Рецепторы на клетках, являющихся постсинаптическими по отношению к одному пресинаптическому нейрону, могут фармакологически различаться и могут контролировать разные ионные каналы. 

  3. Одна постсинаптическая клетка может иметь более одного типа рецепторов для данного медиатора, и каждый из этих рецепторов может контролировать отличный от других механизм ионной проводимости. 

Вследствие этих трех свойств клетки могут оказывать противоположные синаптические действия как на различные постсинаптические клетки, так и на одну и ту же.

Медиаторы, выявленные к настоящему времени у животных и человека, составляют довольно разнородную группу веществ. Моноамины: ацетилхолин, дофамин, норадреналин, серотонин (5-гидрокситриптамин, 5-ГТ), гистамин. Аминокислоты: гамма-аминомасляная кислота (ГАМК), глутаминовая кислота, глицин, таурин и др. Нейропептиды: метэнкефалин, лейэнкефалин, эндорфин, окситоцин, вазопрессин и др. Соответствующие синапсы называют, например, холинэргические, серотонинэргические, норадренэргические и т.д. Большому количеству медиаторов соответствует большое количество постсинаптических рецепторов: холинорецетпоры, адренорецепторы, ГАМК-рецепторы и т.д. В пределах каждой группы рецепторов существует разнообразие их подтипов, например никотиновые и мускариновые холинорецепторы (Н-ХР и М-ХР, соответственно) (рис.13).

Рис. 13. Трехмерная модель никотинергического АХ рецептора (А и Б - по А.Карлину с соавторами; В и Г - по Ш. Нума с соавторами) [4]:

А. Рецепторный канал, состоящий из 5 субъединиц, которые образуют пору.

Б. Изменение конформации рецепторного канала при связывании двух молекул АХ с внеклеточной частью a-субъединиц и открытие поры, находящейся в билипидном слое. Как Na+, так и K+ двигаются соответственно своим электрохимическим градиентам через открытый канал.

В. Каждая субъединица состоит из четырех проникающих через мембрану a-спиралей (М1 - М4).

Г. Пять субъединиц образуют заполненный водой канал, причем сегменты М2 каждой субъединицы обращены вовнутрь и выстилают канал.

1,2 - внеклеточная и цитоплазматическая поверхности мембраны; 3 - область входа; 4 - ионоселективная пора; 5 - область выхода.

Разделение рецепторов проводится на основе различий их фармакологических свойств: разные агонисты (вещества, имитирующие эффект медиатора) и антагонисты (вещества, препятствующие проявлению эффекта медиатора). Например, для Н-ХР агонист - никотин, антагонисты - тубокурарин (выделен из яда кураре), бунгаротоксин (выделен из яда змеи рода Bungarus). По агонистам различают три типа рецепторов глутамата: квисквалатные (AMPA-тип), каинатные и NMDA (N-метил-D-аспартат)-типа. Некоторые рецепторы медиаторов (в частности, адренорецепторы и рецепторы многих нейропептидов) связаны не с ионными каналами (ионотропные рецепторы), а с мембранным ферментом (метаботропные рецепторы), например, аденилатциклазой. Последняя, однократно активируемая медиатором, катализирует превращение множества молекул аденозинтрифосфорной кислоты (АТФ) циклический аденозинмонофосфат (цАМФ) - усилительный механизм. ЦАМФ, являясь вторичным посредником, активирует в клетке многие ферменты, в частности протеинкиназы и таким образом стимулирует клеточный метаболизм. Разрушается цАМФ фосфодиэстеразой. Аденилатциклазной системе аналогичны гуанилатциклазная система, система фосфолипазы С и т.д. (рис.14). Образование цГМФ из нециклической формы катализируется гуанилатциклазой, активность которой стимулирует окись азота. Молекулы последней образуются при дезаминировании аргинина и образовании цитруллина под действием синтазы окиси азота. Активность этого фермента в свою очередь регулируется комплексом Са2+-кальмодулин. Таким образом, например, глутаматные рецепторы, запускающие входящий ток ионов Са2+, управляет колебаниями концентрации цГМФ в цитоплазме нейронов (см. рис. 11). В головном мозге позвоночных активность синтазы окиси азота выявляется в мозжечке, четверохолмии, полосатом теле и обонятельной луковице.

Рис. 14. Три важных каскада вторичных мессенджеров, которые начинаются с гидролиза фосфолипидов в клеточной мембране [4]:

А. В диацилглицерин-инозитолтрифосфатном пути участвует G- белок. После его активации через комплекс, образуемый молекулами медиатора с рецептором, стимулируется фосфолипаза С, которая свой субстрат фосфатидилинозитол (ФИ) расщепляет на 2 вторичных мессенджера: диацилглицерин (ДАГ) и инозитолтрифосфат (ИТФ). Последний водорастворим и диффундирует в цитоплазму, где соединяется с рецептором в мембране эндоплазматического ретикулума и этим вызывает высвобождение ионов Ca2+ из внутренних депо.

Б. Ca2+ / кальмодулин-зависимая протеинкиназа. Ионы Ca2+ в комплексе с кальмодулином активируют Ca2+/кальмодулинзависимую киназу II, фосфорилирующую белковый субстрат, что приводит к развитию клеточного ответа.

В. Диацилглицерин остается в мембране и активирует там вместе с также необходимыми для этого процесса мембранными фосфолипидами протеинкиназу С. Последняя активируется также только, если она занимает примембранное положение. Не все изоформы протеинкиназы нуждаются в ионах Са2+ для активирования.

Р и К - регуляторная и каталитическая субъединицы ферментов, соответственно.

Трофические влияния, передаваемые через синапсы. Помимо передачи возбуждающих и тормозных сигналов, которые имеют функциональное значение, синапсы обеспечивают трофические (т.е. затрагивающие рост и дифференцировку) взаимодействия контактирующих клеток, реализуемые с помощью трофических факторов белковой природы, вероятно, также аккумулируемых в везикулах. Эти факторы обеспечивают метаболическое поддержание необходимой структуры и свойств этих клеток. Двусторонние трофические взаимодействия предполагают во всех синапсах, но изучены они главным образом в скелетных нервно-мышечных синапсах позвоночных. Денервация мышцы приводит к потере мышечными волокнами дифференцировки, достигнутой в онтогенезе.

Постсинаптические процессы. Изменения потенциала постсинаптической мембраны в результате активации синапса называют синаптическим потенциалом. Возбуждающий постсинптический потенциал (ВПСП) возникает в деполяризующих синапсах и обусловлен одновременным повышением проницаемости мембраны для ионов Na+ и K+. Возникающие при этом токи противоположно направлены (натриевый - внутрь клетки, калиевый - наружу). МП смещается в сторону деполяризации до значения равного полусумме равновесных потенциалов ENa и EK. Тормозные постсинаптические потенциалы (ТПСП) представляют собой гиперполяризационные изменения МП (до-80-90 мВ) и обусловлены открытием каналов для ионов K+ (которые покидают клетку), либо ионов Cl-(входящих в клетку), либо для тех и других ионов одновременно. Амплитуда синаптических потенциалов зависит от количества выделяющегося медиатора (числа квантов) и, таким образом, эти реакции являются градуальными в отличие от ПД. Это амплитудное кодирование частотного сигнала осуществляется в постсинаптическом нейроне за исключением его аксонной области, в которой происходит возврат к частотному кодированию, благодаря распространяющимся по аксонному волокну ПД (рис.15).

Рис. 15. Электрические сигналы в области возбуждающего (1 - 3) и тормозного (4,5) синапсов [5]:.

Создаваемая ВПСП деполяризация может значительно превышать (1), достигать (2) или оставаться ниже (3) порога возбуждения (отмечен точками). Амплитуда гиперполяризации вследствие развития ТПСП (4,5) зависит от частоты пресинаптических ПД и влияет на частоту фоновой активности постсинаптической клетки.

Т.к. направление ионных токов зависит от градиента электрохимического потенциала данного иона, то амплитуда и полярность синаптического сигнала изменяются с изменением МП. Его значение, при котором происходит изменение знака синаптического действия, называется потенциалом реверсии. Распространение синаптических потенциалов обусловлено только физическими свойствами мембраны клетки и поэтому происходит с затуханием (уменьшением амплитуды). Синаптические потенциалы, возникающие в разных синапсах, могут взаимодействовать между собой, подчиняясь правилам алгебраического суммирования. Деполяризация, вызванная суммацией ВПСП, приближает МП к пороговой для возбуждения величине. Напротив, наложение ТПСП отдаляет его. Степень деполяризации или гиперполяризации мембраны зависит от «противоборства» между ионными проводимостями и токами, активируемыми при ВПСП и ТПСП (рис.16). Главную роль в интеграции приходящих в клетку сигналов выполняют особые участки нейрональной мембраны: узлы ветвления дендритного дерева, соматическая мембрана, аксонный холмик. Чаще всего на дендритной мембране локализуются возбуждающие синапсы, в то время как тормозные располагаются, как правило, на соматической мембране. Окончательная интеграция всех входов происходит на аксонном холмике. Поскольку постсинаптические процессы возникают на различном удалении от триггерной зоны и распространяются пассивно, то их вклад в интегративный выход будет зависеть от локализации синаптических контактов.

Рис. 16. Интеграция ВПСП и ТПСП при различных величинах потенциала покоя (ПП) [6]:

А. ПП ниже (т.е. менее негативный), чем тормозный равновесный потенциал Етпсп, и увеличение проводимости во время ТПСП вызывает гиперполяризацию мембраны; Б. ПП равен Етпсп и изменения потенциала не возникает.

В. При ПП, выше (отрицательнее) чем Етпсп, ТПСП вызывает деполяризацию мембраны. Во всех случаях интегративная суммация ВПСП и ТПСП ведет к уменьшению амплитуды ВПСП (пунктирная линия) из-за падения сопротивления мембраны и тем самым - к уменьшению возбудимости нейрона.

На это взаимодействие влияют геометрические взаимоотношения между возбуждающими и тормозными синапсами, расположенными в разных участках дендритов, а также особенности электротонического распространения тока по этим дендритам. При этом в постсинаптическом нейроне при генерации ПД могут возникать эффекты сложения и вычитания входных сигналов, имеющих одинаковые или различные (возбуждающую и тормозную) модальности (рис.17).

Рис. 17. Взаимоотношения «вход-выход» у различных синапсов [5]:

А - эффект сложения, Б - эффект вычитания.

Передача сигнала неимпульсирующими нейронами. Некоторые нервные клетки не генерируют в физиологических условиях ПД (эта типичная для нейронов способность проявляется после некоторых видов химического воздействия). Примером таких клеток у позвоночных могут служить фоторецепторы и клетки-зерна обонятельных луковиц. Однако у этих нейронов сохраняется закономерность: медиатор выделяется только при деполяризации пресинаптической клетки.

4. Глия

Электрические свойства мембраны глиальных клеток. Цитоплазма этих клеток содержит высокие концентрации ионов К+, а мембрана практически не пропускает другие ионы. Поэтому МП приближается к калиевому равновесному потенциалу (около -90 мВ) и ведет себя в точном соответствии с уравнением Нернста. Сопротивление мембраны глиальных клеток приближается к таковому у нейронов, но способность к генерации нервных импульсов и их проведению отсутствует. Межклеточные щели между нейронами и глией шириной около 20 нм препятствуют прямому распространению токов возбуждения в глиальные клетки. В то же время электрические разряды нейронов сопровождаются деполяризацией глиальных клеток, пассивно отражающей накопление ионов К+ в межклеточном пространстве. МП возвращается к норме в результате поглощения и диффузии калия. Возникающие таким образом колебания МП вносят свой вклад в регистрируемые внеклеточными электродами потенциалы (например, электроэнцефалограмма, электроретинограмма). Мембрана глиальных клеток содержит рецепторы, которые могут регулировать внутриклеточные процессы (например, глутаматные рецепторы гигантских глиальных клеток пиявки регулируют входящие кальциевые токи, а b-адренорецепторы астроцитов контролируют внутриклеточную концентрацию цАМФ).

Функции глиальных клеток:

1. Обеспечение физической опоры нейронов.

2. Глиальные клетки являются частью гематоэнцефалического барьера - механизма поддержания мозгом постоянства среды, окружающей его клетки. Как часть этой обширной функции можно рассматривать регуляцию ионного состава микросреды вокруг нейронов. Например, забуферивание межклеточного калия астроцитами и мюллеровсикми клетками сетчатки; 3. Электрическая изоляция нервных проводников миелиновой оболочкой, образуемой олигодендроцитами в ЦНС и шванновскими клетками в периферических нервах.

4. Поглощение, накопление и секреция медиаторов. Например, шванновские клетки выделяют кванты АХ при дегенерации моторных терминалей позвоночных. Усиленная секреция ГАМК наблюдается при деполяризации глиальных клеток спинальных и симпатических ганглиев. В астроцитах протекает также частичный метаболизм медиаторов: глутамат и ГАМК превращаются в глутамин, который, попадая в нейроны, используется для синтеза новых молекул медиатора.

5. Образуют рубцовую ткань и обладают фагоцитарной способностью. В процессе регенерации периферические аксоны способны прорастать в направлении иннервируемого органа по пути, обозначенному оставшимися шванновскими клетками. В развивающемся мозге клетки радиальной глии образуют каркас, направляющий миграцию нейронов. Астроциты, возможно, играют центральную роль в формировании иммунного ответа в мозге.

6. Обеспечение нейронов питательными и другими веществами. Присутствие клеток глии необходимо нейронам для синтеза медиаторов.

5. Общие принципы координационной деятельности нервной системы.

Нервная сеть - система нейронных цепочек, передающих возбуждающие и тормозные сигналы. У человека нервная система включает около 1010 элементов, у примитивных беспозвоночных - около 104. Выделяют нейроны: 1) чувствительные (сенсорные); 2) двигательные (эффекторные); к ним относятся мотонейроны, возбуждающие мышечные волокна у позвоночных (у беспозвоночных также и тормозящие), а также нейроны, запускающие работу желез; 3) вставочные нейроны, передающие сигналы от сенсорных к эффекторным. Командные вставочные нейроны запускают более или менее сложные поведенческие акты. Нейроны-триггеры - командные нейроны, только запускающие двигательную программу, но не участвующие в ее дальнейшем осуществлении. Воротные нейроны могут поддерживать или видоизменять какую-то двигательную программу, лишь будучи постоянно возбужденными; такие нейроны обычно управляют позными или ритмичными движениями.

Дивергенция пути - контактирование одного нейрона с множеством нейронов более высокого порядка, встречается у нейронов всех функциональных типов, обеспечивает расширение сферы действия сигнала, т.е. иррадиацию возбуждения (или торможения). Конвергенция - схождение многих нервных путей к одним и тем же нейронам, что делает эти клетки интеграторами соответствующих сигналов. Например, на каждом мотонейроне спинного мозга позвоночных образуют синаптические связи тысячи сенсорных, а также возбуждающих и тормозных вставочных нейронов. При этом состояние мотонейрона, т.е. его импульсация или «молчание» в каждый данный момент определяется алгебраическим сложением тормозных и возбуждающих влияний в форме ВПСП и ТПСП. Конвергенция путей лежит в основе феноменов пространственного облегчения (превышение эффекта одновременного действия двух относительно слабых афферентных возбуждающих входов над суммой их раздельных эффектов) и окклюзии (эффект одновременно действующих двух возбуждающих входов меньше алгебраической суммы раздельных эффектов).

Торможение в нервных сетях осуществляется на основе двух клеточных механизмов тормозного взаимодействия:

постсинаптическое торможение - осуществляемое через тормозные синапсы и заключающееся в удалении МП от его порогового значения.

пресинаптическое торможение - осуществляется через аксо-аксональные синапсы, образуемые интернейроном на возбуждающих афферентных по отношению к мотонейронам волокнах. Медиатор, выделяющийся в пресинаптической терминали аксона интернейрона, вызывает деполяризацию возбуждающих окончаний за счет увеличения их проницаемости для ионов Cl-. Эта деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона, и угнетение процесса высвобождения из него медиатора. В результате происходит снижение амплитуды ВПСП без каких-либо изменений свойств постсинаптической мембраны (рис.18).

Рис. 18. Схема синаптических взаимодействий на соматической мембране мотонейрона в спинном мозге кошки[2]:

Сигнал, поступающий через возбуждающий синапс (ВС), вызывает ВПСП (1). Активация нескольких подобных входов ведет к суммации ВПСП и возникновению ПД мотонейрона (2). В результате прохождения сигнала через тормозный синапс (ТС) на мембране мотонейрона возникает ТПСП (3). Если ВПСП и ТПСП возникают в один и тот же момент, снижается амплитуда ВПСП (4) и ПД на мембране аксонного холмика не возникает (5). "Двугорбый" ход тормозимого ВПСП обусловлен неодинаковой динамикой ВПСП и ТПСП. Аксо-аксонный синапс (ААС) деполяризует мембрану возбуждающего пресинаптического волокна (В1) так, что ПД, приходящий по нему к возбуждающему синапсу, в месте пресинаптического торможения, ААС, становится меньше. В результате этого количество выделяемого медиатора и вследствие этого и амплитуда ВПСП становятся меньше (7). После раздражения пресинаптических тормозящих волокон (В2) серией импульсов их действие затягивается (8) и продолжается около полусекунды, прежде чем амплитуда ВПСП достигает исходных показателей (6).

Реципрокное торможение - взаимное (сопряженное) торможение центров антагонистических рефлексов, обеспечивающих их координацию, развивается с помощью тормозных вставочных нейронов. Пример: торможение мотонейронов мышц-антагонистов.

Возвратное торможение - торможение мотонейронов собственными импульсами, поступающими по возвратным коллатералям к тормозным интернейронам Реншоу, которые образуют в свою очередь тормозные синапсы на этих же мотонейронах. Такое торможение обеспечивает ограничение ритма мотонейронов, что важно для работы двигательного аппарата.

Латеральное торможение - торможение элементов соседних нервных цепочек в конкурирующих сенсорных каналах связи, осуществляемое с помощью тормозных интернейронов. Обеспечивает контраст - выделение существенных сигналов из фона.

Прямое взаимное торможение - тормозное взаимодействие двух (или большего числа) командных нейронов, осуществляющееся без специальных вставочных клеток.

Вторичное торможение (торможение Введенского) возникает без участия специализированных тормозных структур как следствие избыточной активации возбуждающих входов нейрона.

<<< НазадСодержаниеДальше >>>

medbookaide.ru