MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Гусев М. В., Минеева Л. А. - Микробиология

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
<<< НазадСодержаниеДальше >>>

Следующий важный шаг в формировании механизма использования молекулярного кислорода в качестве конечного акцептора электронов — использование этого процесса, таящего в себе большие энергетические возможности, для получения клеткой энергии. Действительно, количество энергии, освобождающейся при переносе пары электронов, зависит как от природы донора, так и от природы акцептора электронов. Hапример, окислительно-восстановительный потенциал НАД-H2 равен – 320 мВ, а молекулярного кислорода — +810 мВ. Для образования 1 молекулы АТФ необходим перенос пары электронов по электрохимическому градиенту, соответствующему разнице потенциалов приблизительно 200 мВ.

Для использования O2 в качестве конечного акцептора электронов в процессах, связанных с получением метаболической энергии представлялось наименее сложным превратить фотосинтетический электронный транспорт в дыхательный. С этой целью надо было добавить дегидрогеназы на низкопотенциальный конец цепи и цитохромоксидазы — на другой, взаимодействующий непосредственно с O2. Все необходимые типы переносчиков и обратимые протонные АТФазы уже были к этому времени сформированы.

Основная задача сводилась к созданию ферментной системы для четырехэлектронного восстановления O2 (цитохромоксидазы), при котором не освобождалось бы его токсических промежуточных продуктов.

Фосфорилирование, сопряженное с переносом электронов от субстратов в темновых окислительных реакциях, получило название окислительного фосфорилирования. Развитие механизма окислительного фосфорилирования позволило добиться наиболее полного извлечения свободной энергии из окисляемых субстратов.

Таким образом, появление молекулярного кислорода положило начало эволюции новых типов жизни в мире прокариот, в основе которых лежит получение энергии за счет процессов окислительного фосфорилирования.

Глава 16. Дыхание. Типы жизни, основанные на окислительном фосфорилировании

Чтобы максимально использовать энергетические возможности, заложенные в процессе переноса электронов от субстрата на молекулярный кислород, необходимо было сформировать. механизмы, позволяющие полностью отщеплять водород (электроны) от субстрата; создать системы, в которых весь отщепленный водород передается на O2 наиболее рациональным путем, образовать механизмы, при помощи которых энергия электронного переноса трансформируется в химическую энергию, доступную для использования во всех энергозависимых процессах клетки. В ходе эволюции эти задачи были решены следующим образом.

Полное отщепление водорода от органического субстрата достигается в результате функционирования ЦТК или окислительного пентозофосфатного цикла. Если энергетическим субстратом являются неорганические соединения, для их окисления также были сформированы ферментативные реакции, катализируемые соответствующими дегидрогеназами.

Перенос водорода на молекулярный кислород осуществляется с помощью системы структурно и функционально взаимосвязанных переносчиков, составляющих в совокупности "дыхательную цепь".

Энергетические возможности переноса электронов по электрохимическому градиенту реализуются в результате функционирования механизмов, сопрягающих электронный транспорт с фосфорилированием.

Рассмотрим подробнее, как была решена каждая задача, при этом нам представляется более удобным сначала изложить максимум того, что достигнуто природой в процессе эволюции, а уже затем — какие варианты на пути формирования аналогичных механизмов обнаружены у эубактерий.

Цикл трикарбоновых кислот

ЦТК можно рассматривать как выработанный клеткой механизм, имеющий двоякое назначение. Основная функция его заключается в том, что это совершенный клеточный "котел", в котором осуществляется полное окисление вовлекаемого в него органического субстрата и отщепление водорода. Другая функция цикла — снабжение клетки рядом предшественников для биосинтетических процессов. Обычно ЦТК является дальнейшей "надстройкой" над анаэробными энергетическими механизмами клетки. Исходным субстратом ЦТК служит ацетил-КоА ("активированная уксусная кислота"), образующийся у аэробов из пирувата в реакции, осуществляемой пируватдегидрогеназным комплексом:

CH3-CO-COOH + КоA-SH + НАД+ ® CH3-CO~S-КоA + НАД-H2 + CO2

Рис. 92. Цикл трикарбоновых кислот и глиоксилатный шунт: Ф1 — цитратсинтаза (конденсирующий фермент); Ф2 — аконитаза; Ф3 — изоцитратдегидрогеназа; Ф4 — a-кетоглутаратдегидрогеназа; Ф5 — сукцинилтиокиназа; Ф6 — сукцинатдегидрогеназа; Ф7 — фумараза; Ф8 — малатдегидрогеназа; Ф9 — изоцитратлиаза; Ф10 — малатсинтетаза. Включение углеродных атомов ацетильного остатка в молекулу лимонной кислоты помечено звездочками. Пунктирными линиями изображены реакции глиоксилатного шунта  

Собственно ЦТК (рис. 92) начинается с конденсации ацетил-КоА с молекулой щавелевоуксусной кислоты, катализируемой цитратсинтазой. Продуктами реакции являются лимонная кислота и свободный кофермент А. Лимонная кислота с помощью фермента аконитазы последовательно превращается в цис-аконитовую и изолимонную кислоты. Последняя превращается в a-кетоглутаровую кислоту в реакции, катализируемой изоцитратдегидрогеназой. H2 первом этапе реакции имеет место дегидрирование изолимонной кислоты, в результате которого образуется щавелевоянтарная кислота и НАД-H2. На втором этапе щавелевоянтарная кислота, все еще, вероятно, связанная с ферментом, подвергается декарбоксилированию. Продукты реакции — a-кетоглутаровая кислота, освобождающаяся от фермента, и CO2.

a-кетоглутаровая кислота подвергается далее окислительному декарбоксилированию, катализируемому a-кетоглутаратдегидрогеназным комплексом, в результате чего образуется сукцинил-КоА. Эта реакция — единственная необратимая реакция из десяти, составляющих ЦТК. Один из продуктов реакции — сукцинил-КоА — представляет собой соединение, содержащее высокоэнергетическую тиоэфирную связь.

Следующий этап — образование янтарной кислоты из сукцинил-КоА, катализируемое сукцинилтиокиназой, в результате которого энергия, освобождающаяся при разрыве тиоэфирной связи, запасается в фосфатной связи ГТФ. ГТФ затем отдает свою фосфатную группу молекуле АДФ, что приводит к образованию АТФ. Следовательно, на данном этапе ЦТК имеет место субстратное фосфорилирование.

Янтарная кислота окисляется в фумаровую с помощью фермента сукцинатдегидрогеназы. Далее фумаровая кислота гид-ратируется под действием фумаразы, в результате чего возникает яблочная кислота, которая подвергается дегидрированию, приводящему к образованию ЩУК. Реакция катализируется НАД-зависимой малатдегидрогеназой. Этой реакцией завершается ЦТК, так как вновь регенерируется молекула-акцептор (ЩУК), запускающая следующий оборот цикла. Однако поскольку из цикла происходит постоянный отток для биосинтезов промежуточных метаболитов, приводящий к понижению уровня ЩУК, возникает необходимость в ее дополнительном синтезе. Это обеспечивается как в реакциях карбоксилирования пирувата или фосфоенолпирувата (см. табл. 24), так и с помощью последовательности из двух реакций, получивших название глиоксилатного шунта (рис. 92). В первой из них изолимонная кислота под действием изоцитратлиазы расщепляется на янтарную и глиоксиловую кислоты. Во второй реакции, катализируемой малатсинтетазой, глиоксиловая кислота конденсируется с ацетил-КоА с образованием яблочной кислоты, превращающейся далее в ЩУК. В результате двух новых реакций происходит синтез C4-кислоты из двух C2-остатков. Глиоксилатный шунт не работает при выращивании на субстратах, катаболизирование которых приводит к образованию пировиног-радной кислоты. Он включается при выращивании организмов на C2-соединениях.

Энергетическим "топливом", перерабатываемым в ЦТК, служат не только углеводы, но и жирные кислоты (после предварительной деградации до ацетил-КоА), а также многие аминокислоты (после удаления аминогруппы в реакциях дезамини-рования или переаминирования). В результате одного оборота цикла происходят 2 декарбоксилирования, 4 дегидрирования и 1 фосфорилирование. Итогом 2 декарбоксилирований является выведение из цикла 2 атомов углерода (2 молекулы CO2), т. е. ровно столько, сколько его поступило в виде ацетильной группы. В результате 4 дегидрировании образуются 3 молекулы НАД-H2 и 1 молекула ФАД-H2. Как можно видеть, в процессе описанных выше превращений весь водород оказывается на определенных переносчиках и задача теперь — передать его через другие переносчики на молекулярный кислород.

Как представлено это у эубактерий? С определенными последовательностями ферментативных реакций, аналогичных тем, которые имеют место в ЦТК, мы встречаемся у эубактерий, находящихся на разных этапах эволюционного развития. Некоторые реакции цикла функционируют в анаэробных условиях у бактерий, получающих энергию в процессах брожения.

У пропионовых бактерий в последовательность реакций брожения, ведущих к синтезу пропионовой кислоты, "вмонтированы" реакции от янтарной кислоты до ЩУК, аналогичные таковым ЦТК, но идущие в противоположном направлении и связанные на двух этапах с восстановлением субстратов реакций (см. рис. 54). В пропионовокислом брожении эти реакции функционируют для акцептирования водорода, являясь одним из вариантов решения донор-акцепторной проблемы в анаэробных условиях.

У других эубактерий мы встречаемся с более полно сформированной последовательностью реакций, аналогичных ЦТК, но еще не замкнутых в полный цикл. Наиболее часто отсутствует ферментативный этап превращения a-кетоглутаровой кислоты в янтарную, в результате чего ЦТК представляется как бы "разорванным" (см. рис. 85). "Разорванный" ЦТК обнаружен у бактерий, осуществляющих бескислородный фотосинтез, цианобактерий, хемоавтотрофов и у некоторых хемогетеротрофов. Вероятно, в таком виде ЦТК не может функционировать в системе энергодающих механизмов клетки. В этом случае его основная функция — биосинтетическая. Тот факт, что "разорванный" ЦТК встречается у различных далеко отстоящих друг от друга физиологических групп эубактерий, указывает на сложные пути эволюции данного механизма. Этот вопрос требует своего объяснения.

Дыхательная цепь

Электроны с восстановленных переносчиков (НАД-H2, НАДФ-H2, ФАД-H2), образующихся при функционировании ЦТК или окислительного пентозофосфатного цикла, поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее совершенном виде и единообразии дыхательная цепь предстает у эукариот, где она локализована во внутренней мембране митохондрий. У эубактерий дыхательные цепи поражают разнообразием своей конкретной организации при сохранении принципиального сходства в строении и функционировании.

Дыхательные электронтранспортные цепи состоят из большого числа локализованных в мембране переносчиков, с помощью которых электроны передаются или вместе с протонами, т. е. в виде атомов водорода, или без них. Компонентами цепи, локализованными в мембране, являются переносчики белковой (флавопротеины, FeS-белки, цитохромы) или небелковой (хиноны) природы. Флавопротеины и хиноны осуществляют перенос атомов водорода, а FeS-белки и цитохромы — электронов.

НАД(Ф)-зависимые дегидрогеназы, катализирующие отрыв водорода от молекул различных субстратов и передающие его на стартовый переносчик дыхательной цепи — НАД(Ф)-H2-дегидрогеназу, — растворимые ферменты. Дегидрогеназы флавопротеиновой природы, выполняющие аналогичную функцию, могут быть локализованными в мембране (например, сукцинатдегидрогеназа) или существовать в растворимой форме (ацетил-КоА-дегидрогеназы жирных кислот). Водород с них поступает в дыхательную цепь на уровне хинонов.

Известно более 250 НАД(Ф)-зависимых дегидрогеназ, активно участвующих в реакциях промежуточного обмена. Но не все из них имеют отношение к энергетическому метаболизму. С помощью дегидрогеназ осуществляется перенос гидрид-иона (2e– + Н+ ® H–) от субстрата к НАД(Ф), при этом в среду переходит протон (рис. 93, А). Атом водорода входит в состав пиридинового кольца, а электрон присоединяется к азоту пиридинового кольца. После восстановления НАД(Ф)-H2 отщепляется от активного центра фермента и переносится к мембране, где акцептируется флавиновой дегидрогеназой и передает ей восстановительные эквиваленты. Одновременно к дегидрогеназе, освобожденной от кофермента, присоединяется окисленная молекула НАД(Ф), поступающая из среды. Таким образом, особенность НАД(Ф) — их подвижность, позволяющая им курсировать от молекул — доноров электронов, находящихся в цитоплазме, к акцепторам электронов, локализованным в мембране.

В состав флавиновых дегидрогеназ входят флавиновые нуклеотиды, прочно связанные с апоферментом и не отщепляющиеся от него ни на одной стадии каталитического цикла. Окислительно-восстановительные свойства флавопротеинов обусловлены способностью изоаллоксазинового кольца рибофлавина к обратимому переходу из окисленного состояния в восстановленное, при котором происходит присоединение к кольцу 2 электронов в составе атомов водорода (рис. 93, Б). При изучении дыхательных цепей особенно интересны два связанных с мембраной флавопротеина: сукцинатдегидрогеназа, катализирующая окисление сукцината в ЦТК, и НАД(Ф)-H2-дегидрогеназа, катализирующая восстановление своей флавиновой простетической группы, сопряженное с окислением НАД(Ф)xH2.

Рис. 93. Механизмы обратимого окисления и восстановления некоторых переносчиков водорода: А — пиридиновое кольцо НАД(Ф); Б — изоаллоксазиновое кольцо рибофлавина ФМН или ФАД; В — хиноидное кольцо. Присоединенные атомы водорода и электрон пиридинового кольца обведены пунктиром (по Dagley, Nicholson, 1973)  

Участие в дыхательном электронном транспорте принимают белки, содержащие железосероцентры (см. рис. 58). Они входят в состав некоторых флавопротеинов, например сукцинат- и НАД(Ф)-H2-дегидрогеназ, или же служат в качестве единственных простетических групп белков. Дыхательные цепи содержат большое число FeS-центров. В митохондриальной электронтранспортной цепи функционирует, вероятно, около дюжины таких белков. В зависимости от строения FeS-центры могут осуществлять одновременный перенос 1 или 2 электронов, что связано с изменением валентности атомов железа.

Хиноны — жирорастворимые соединения, имеющие длинный терпеноидный "хвост", связанный с хиноидным ядром, способным к обратимому окислению — восстановлению путем присоединения 2 атомов водорода (рис. 93, В). Наиболее распространен убихинон, функционирующий в дыхательной цепи на участке между флавопротеинами и цитохромами. В отличие от остальных электронных переносчиков хиноны не связаны со специфическими белками. Небольшой фонд убихинона растворен в липидной фазе мембран.

Цитохромы, принимающие участие на заключительном этапе цепи переноса электронов, представляют собой группу белков, содержащих железопорфириновые простетические группы (гемы). С помощью цитохромов осуществляется перенос электронов, в процессе которого меняется валентность железа:

Fe2+ « Fe3+ + e– В митохондриях обнаружено пять цитохромов (b, c, c1, a, a3), различающихся между собой спектрами поглощения и окислительно-восстановительными потенциалами. Различия по этим параметрам обусловлены белковыми компонентами цитохромов, природой боковых цепей их порфиринов и способом присоединения гема к белкам. Конечные цитохромы (a + a3) передают электроны на молекулярный кислород, представляя собой собственно цитохромоксидазу, в реакционном центре которой содержатся помимо двух гемов два атома меди. Образование воды имеет место при переносе на молекулу кислорода 4 электронов. Некоторые цитохромоксидазы осуществляют перенос на O2 только 2 электронов, следствием чего является возникновение перекиси водорода. Перекись водорода далее разрушается каталазой или пероксидазой.

Рис. 94. Схема переноса электронов в дыхательной цепи митохондрий: ФМН — простетическая группа НАД(Ф)-H2 — дегидрогеназы; ФАД — простетическая группа сукцинатдегидрогеназы; УХ — убихинон; b, c, с1, а, a3 — цитохромы. Сплошными линиями обозначены процессы, протекающие в мембране; прерывистыми — в цитозоле клетки; зигзагообразной линией показаны места действия ингибиторов  

Таким образом, дыхательная цепь переноса электронов в митохондриях состоит из большого числа промежуточных переносчиков, осуществляющих электронный транспорт с органических субстратов на O2. Последовательность их расположения, представленная на рис. 94, подтверждается различного рода данными: значениями окислительно-восстановительных потенциалов переносчиков, ингибиторным анализом.

Обнаружены ингибиторы, специфически действующие на определенные участки дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома b, действуя предположительно на НАД(Ф)-H2-дегидрогеназу. Антимицин А (антибиотик, продуцируемый Streptomyces) подавляет перенос электронов от цитохрома b к цитохрому c1. Цианид, окись углерода и азид блокируют конечный этап переноса электронов от цитохромов a + a3 на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтранспортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора — в окисленной форме.

Рис. 95. Дыхательные цепи Azotobacter vinelandii (A). Micrococcus lysodeikticus (Б) и Escherichia coli (В) в аэробных (1), микроаэробных (2) и анаэробных (3) условиях: ФП — флавопротеин; FeS — железосероцентр; УХ — убихинон; MX — менахинон; ФР — фумаратредуктаза; b, c, c1, a, a3 — цитохромы  

Какие формы организации дыхательной цепи обнаружены у эубактерий, т. е. на определенных подступах к ее окончательному формированию? Группы первично анаэробных хемогетеротрофов не имеют развитой системы связанного с мембранами электронного транспорта. Полностью сформированной системой дыхательного электронного транспорта обладают фотосинтезирующие эубактерии: цианобактерии, многие пурпурные бактерии (в наибольшей степени дыхание развито у несерных пурпурных бактерий). Все облигатно и факультативно аэробные хемотрофы имеют дыхательные цепи. У разных групп эубактерий они значительно различаются по составу, что выражается в следующем: замене одних переносчиков другими со сходными свойствами (убихинон — менахинон, цитохромы aa3 — o и т. д.); добавлении или удалении какого-либо переносчика (например, цитохрома c); разветвлении на уровне первичных дегидрогеназ, являющемся результатом множества мест включения восстановительных эквивалентов с окисляемых субстратов в цепь, и ветвлении, связанном с присутствием 2 или более цитохромоксидаз. Дыхательные цепи некоторых хемогетеротрофных эубактерий приведены на рис. 95.

Запасание клеточной энергии в процессе дыхания

Вся система переноса электронов от субстрата на O2 через длинную цепь переносчиков представлялась бы нерационально громоздкой, если бы единственной целью процесса было соединение электронов с молекулярным кислородом. Другое назначение этого механизма состоит в запасании освобождающейся в процессе электронного переноса энергии путем трансформирования ее в химическую энергию фосфатных связей.

Имеющиеся экспериментальные данные подтверждают выдвинутый в начале 60-х гг. английским биохимиком П. Митчеллом хемиосмотический механизм энергетического сопряжения электронного транспорта с фосфорилированием. П. Митчелл "обратил внимание" на судьбу протонов при электронном транспорте, которые переносятся в этом процессе через мембрану в одном направлении, создавая градиент концентрации H+ по обе стороны мембраны (см. рис. 25). Перенос электронов и протонов обеспечивается определенным сорасположением мембранных переносчиков, а также свойствами самой мембраны, в первую очередь ее непроницаемостью для протонов.

<<< НазадСодержаниеДальше >>>

medbookaide.ru