MedBookAide - путеводитель в мире медицинской литературы
Разделы сайта
Поиск
Контакты
Консультации

Гусев М. В., Минеева Л. А. - Микробиология

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
<<< Назад Содержание Дальше >>>

* Признак обнаружен у всех (), большинства (), некоторых () представителей группы; () признак отсутствует.

** Количество фотоассимилируемых органических соединений и степень их использования невелики.

В отличие от пурпурных бактерий выделенные до сих пор представители рода Erythrobacter — облигатно аэробные хемоорганогетеротрофы: не могут расти анаэробно ни на свету59, ни в темноте; не растут на свету в аэробных условиях за счет неорганических субстратов, но хорошо растут в тех же условиях в присутствии разнообразных органических соединений (сахаров, органических кислот, некоторых одноуглеродных соединений). Многие штаммы нуждаются в витаминах.

59 Описан штамм Erythrobacter, способный расти на свету в анаэробных условиях, если молекулярный кислород заменить нитратами в качестве конечного акцептора электронов.

В то же время получены экспериментальные доказательства использования эритробактерами энергии света: установлено обратимое фотоокисление бактериохлорофилла a реакционного центра, показано светозависимое включение CO2 и повышение уровня АТФ в клетке; установлена способность мембранных препаратов к фотофосфорилированию. Однако фотосинтетический аппарат, имеющийся в клетках Erythrobacter, не может обеспечить их рост. Облигатная зависимость от молекулярного кислорода связана с тем, что для эритробактеров основным источником энергии служит O2-зависимое дыхание. Фотосинтетическая активность может иметь значение для поддержания жизнеспособности клеток в отсутствие в среде субстратов, обеспечивающих рост.

Бактерии рода Erythrobacter интересны тем, что необходимую для роста энергию получают в результате аэробного дыхания, но не утратили при этом бактериохлорофилла a и других компонентов фотосинтетического аппарата.

Зеленые бактерии

В течение длительного времени зеленые бактерии принимали за зеленые или сине-зеленые водоросли (цианобактерии). Начало их изучения как бактерий связано с именами C. Н. Виноградского и К. ван Ниля. Эта небольшая группа эубактерий, осуществляющих фотосинтез бескислородного типа, разделена на две подгруппы. Зеленые серобактерии — строгие анаэробы и облигатные фототрофы, способные расти на среде с H2S или молекулярной серой в качестве единственного донора электронов; при окислении сульфида до молекулярной серы последняя всегда откладывается вне клетки.

В другую подгруппу выделены нитчатые, передвигающиеся скольжением формы, факультативные анаэробы, предпочитающие использовать органические соединения при фототрофном метаболизме.

Почти все зеленые серобактерии — грамотрицательные одноклеточные неподвижные формы (рис. 79, А). Клетки палочковидные, яйцеобразные или слегка изогнутые. При выращивании в чистой культуре часто образуют цепочки, клубки или сетчатые структуры. Размножаются бинарным делением. В качестве запасного вещества накапливают гликогеноподобный полисахарид. Группа достаточно однородна по нуклеотидному составу ДНК: молярное содержание ГЦ-оснований колеблется от 48 до 58%.

Зеленые нитчатые бактерии состоят из множества палочковидных клеток (рис. 79, Б), размеры которых зависят от вида (0,5 — 5,5x2 — 6 мкм). Длина трихомов достигает 100 — 300 мкм. У некоторых видов трихомы окружены слизистым чехлом. Все описанные представители этой подгруппы имеют типичную грамотрицательную клеточную стенку, но не ригидную, а гибкую, обеспечивающую скользящее движение. Клетки внутри трихома размножаются поперечным бинарным делением. Кроме того, как и все нитчатые формы, зеленые скользящие бактерии размножаются путем отделения небольшой части трихома. Первая зеленая нитчатая бактерия Chloroflexus aurantiacus была выделена из термального серного источника. Позднее были выделены мезофильные варианты этого вида.

Рис. 79. Основные морфологические формы зеленых бактерий:А — зеленые серобактерии: 1 — Chlorobium limicola; 2 — Chlorobium vibrioforme; 3 — Prosfhecochloris aestuarii; 4 — Pelodictyon lutecium; 5 — Pelodictyon clathratiforme; 6 — Clathrochloris sulfurica; 7 — Ancalochloris perfilievii; Б — зеленые скользящие бактерии: 8 — Chloroflexus aurantiacus; 9 — Chloronema giganteum; 10 — Oscillochloris chrysea (по Горленко, Дубининой, Кузнецову, 1977)  

Все зеленые серобактерии — облигатные фотолитоавтотрофы и строгие анаэробы (гораздо более строгие, чем пурпурные серобактерии). В присутствии O2 они не растут. Основной источник углерода — углекислота. Как доноры электронов могут использовать только неорганические соединения: H2S, S0, Na2S2O3, H2. Окисление сульфида, происходящее в периплазматическом пространстве, на первом этапе приводит к образованию молекулярной серы, откладывающейся вне клетки. После исчерпания H2S из среды S0 поглощается клетками и в периплазматическом пространстве происходит ее последующее окисление до сульфата. Изучение локализации процесса образования молекулярной серы у разных групп фототрофных и хемотрофных H2S-окисляющих эубактерий привело к заключению о его однотипности. Во всех случаях сера образуется в клеточном периплазматическом пространстве, но у одних организмов она потом выделяется в среду, у других остается в пределах клетки.

Способность использования зелеными серобактериями органических соединений ограничена несколькими сахарами, аминокислотами и органическими кислотами. Добавление этих соединений в среду приводит к некоторому стимулированию роста культуры и сводится к тому, что они в ограниченной степени используются как дополнительные источники углерода. Ни в одном случае органические соединения не могли служить донорами электронов или основным источником углерода. Их использование возможно только при наличии в среде H2S и CO2. Включение органических соединений в метаболизм зеленых серобактерий происходит по путям, сходным для большинства эубактерий. Определенная роль отводится обнаруженному в этой группе организмов "разорванному" ЦТК, функционирующему в системе конструктивного метаболизма. Для большинства зеленых серобактерий показана способность к фиксации N2.

Физиолого-биохимическая характеристика зеленых нитчатых бактерий основана главным образом на данных, полученных для разных штаммов Chloroflexus aurantiacus, обнаруживших значительное метаболическое разнообразие. C. aurantiacus может быть охарактеризован как факультативный анаэроб и фототроф. На свету он растет в аэробных и анаэробных условиях в присутствии разнообразных органических соединений: сахаров, спиртов, органических кислот и аминокислот. Некоторые штаммы этого вида способны к анаэробному фотоавтотрофному росту, используя H2 или H2S в качестве донора электронов. Окисление H2S приводит к образованию молекулярной серы и отложению ее в среде в виде аморфной массы. Молекулярная сера в очень незначительной степени затем окисляется до сульфата. Хемогетеротрофный рост также возможен в аэробных и для отдельных штаммов в анаэробных условиях.

В разных условиях роста в клетках C. aurantiacus обнаружены ферменты гликолитического пути, ЦТК и глиоксилатного шунта. В то же время у C. aurantiacus не найдено ни восстановительного ЦТК, ни восстановительного пентозофосфатного цикла и механизм, по которому осуществляется автотрофная фиксация CO2, пока не ясен. Показана активность разных реакций карбоксилирования, ведущих к синтезу ЩУК.

Хотя Chloroflexus растет в присутствии молекулярного кислорода, последний репрессирует синтез бактериохлорофиллов и образование хлоросом. В природных условиях популяции этих бактерий часто имеют оранжевый цвет из-за высокого содержания каротиноидов и низкого содержания бактериохлорофиллов в клетке. Поэтому первоначально Chloroflexus принимали за гетеротрофный организм. Только в фотолитоавтотрофных условиях при высоком содержании сульфида в среде и низких интенсивностях света лабораторные культуры или природные популяции Chloroflexus имеют зеленый цвет, обусловленный высоким содержанием бактериохлорофилла c. Данные, сравнивающие по некоторым признакам обе подгруппы зеленых бактерий, суммированы в табл. 26.

Таблица 26. Основные физиолого-биохимические различия между зелеными нитчатыми и серными бактериями

Признак 

Зеленые бактерии 

серные 

нитчатые* 

Организация 

одноклеточная 

многоклеточная 

Подвижность 

неподвижные, за исключением представителей рода Chloroherpeton 

подвижные (скольжение) 

Газовые вакуоли 

**  

 

Запасное вещество 

гликогеноподобный полисахарид 

поли-b-оксимасляная кислота 

Молярное содержание ГЦ-оснований в ДНК, % 

48–58 

53–55 

Отношение к температуре 

мезофилы 

мезофилы и термофилы 

Доноры электронов при фотосинтезе 

H2S, S0, Na2S2O3, H2 

H2S, H2, органические соединения 

Механизм ассимиляции CO2 при фотосинтезе 

восстановительный ЦТК 

не известен 

Источники углерода 

CO2, органические соединения 

органические соединения, CO2 

Рост в темноте на органических средах за счет: 

   аэробного дыхания 

 

 

   анаэробного дыхания 

 

 

   брожения 

 

Цикл трикарбоновых кислот 

"разорван" 

"замкнут" 

Способность к хемоавтотрофии 

 

 

Отношение к O2 

облигатные анаэробы 

факультативные анаэробы 

Способность к азотфиксации 

 

* Физиолого-биохимические свойства изучены в основном у разных штаммов Chloroflexus aurantiacus.

** ? — данных нет; остальные обозначения см. в табл. 25.

Гелиобактерии

Недавно обнаружены строго анаэробные фототрофные бактерии, содержащие единственный бактериохлорофилл g, отсутствующий в других группах фотосинтезирующих эубактерий с бескислородным типом фотосинтеза. Описаны два вида, различающиеся морфологически: Heliobacterium chlorum — одиночные длинные палочки (1x7–10 мкм), способные передвигаться скольжением, и Heliobacillus mobilis — короткие палочковидные формы с перитрихиально расположенными жгутиками. Клеточная стенка грамотрицательного типа, но по нуклеотидной последовательности 16S рРНК и составу пептидогликана обе описанные гелиобактерии близки к грамположительным эубактериям Bacillus subtilis.

В клетках помимо необычного бактериохлорофилла g обнаружено небольшое количество каротиноидов. Пигменты локализованы в ЦПМ, развитой системы внутрицитоплазматических мембран и хлоросом нет. Способ существования — облигатная фототрофия. Рост возможен только на свету в анаэробных условиях. Источниками углерода могут служить некоторые органические кислоты: уксусная, молочная, пировиноградная, масляная. Показана также возможность функционирования путей автотрофной фиксации CO2 (модифицированный и неполный восстановительный ЦТК). Описанные гелиобактерии проявляют очень высокую чувствительность к молекулярному кислороду. Дыхательный метаболизм отсутствует. Обнаруженные виды — активные азотфиксаторы.

Большой интерес к гелиобактериям связан с предположением, что они являются наиболее древними из существующих в настоящее время фотосинтезирующих эубактерий. Кроме того, на основании сходства между бактериохлорофиллом g и хлорофиллом с высказывается предположение о том, что гелиобактерии — предки пластид, содержащих хлорофилл c, имеющихся в группах бурых, диатомовых, золотистых и других водорослей.

Цианобактерии

К цианобактериям относится большая группа организмов, сочетающих прокариотное строение клетки со способностью осуществлять фотосинтез, сопровождающийся выделением O2, что свойственно разным группам водорослей и высших растений. Объединение черт, присущих организмам, относящимся к разным царствам или даже надцарствам живой природы, сделало цианобактерии объектом борьбы за принадлежность к низшим растениям (водорослям) или бактериям (прокариотам).

Вопрос о положении цианобактерии (сине-зеленых водорослей) в системе живого мира имеет долгую и противоречивую историю. В течение длительного времени они рассматривались как одна из групп низших растений, поэтому и систематика осуществлялась в соответствии с правилами Международного кодекса ботанической номенклатуры. И только в 60-х гг. XX в., когда было установлено четкое различие между прокариотным и эукариотным типами клеточной организации и на основании этого К. ван Нилем и Р. Стейниером сформулировано определение бактерий как организмов, имеющих прокариотное строение клетки, встал вопрос о пересмотре положения сине-зеленых водорослей в системе живых организмов.

Изучение цитологии клеток сине-зеленых водорослей с помощью современных методов привело к неоспоримому выводу о том, что эти организмы также являются типичными прокариотами. Как следствие этого Р. Стейниером было предложено отказаться от названия "сине-зеленые водоросли" и называть данные организмы "цианобактериями" — термином, отражающим их истинную биологическую природу. Воссоединение цианобактерий с остальными прокариотами поставило исследователей перед необходимостью пересмотра существующей классификации этих организмов и подчинения ее правилам Международного кодекса номенклатуры бактерий.

В течение длительного времени альгологами было описано около 170 родов и больше 1000 видов сине-зеленых водорослей. В настоящее время ведется работа по созданию новой систематики цианобактерий, основанной на изучении чистых культур. Уже получено больше 300 чистых штаммов цианобактерий. Для классификации использованы постоянные морфологические признаки, закономерности развития культуры, особенности клеточной ультраструктуры, величина и нуклеотидная характеристика генома, особенности углеродного и азотного метаболизма и ряд других.

Цианобактерий — морфологически разнообразная группа грамотрицательных эубактерий, включающая одноклеточные, колониальные и многоклеточные формы. У последних единицей структуры служит нить (трихом, или филамент). Нити бывают простые или ветвящиеся. Простые нити состоят из одного ряда клеток (однорядные трихомы), имеющих одинаковые размеры, форму и строение, или клеток, различающихся по этим параметрам. Ветвящиеся трихомы возникают в результате разных причин, в связи с чем различают ложное и истинное ветвление. К истинному ветвлению приводит способность клеток трихома делиться в разных плоскостях, в результате чего возникают многорядные трихомы или однорядные нити с однорядными же боковыми ветвями. Ложное ветвление трихомов не связано с особенностями деления клеток внутри нити, а есть результат прикрепления или соединения разных нитей под углом друг к другу.

В процессе жизненного цикла некоторые цианобактерий формируют дифференцированные единичные клетки или короткие нити, служащие для размножения (баеоциты, гормогонии), выживания в неблагоприятных условиях (споры, или акинеты) или азотфиксации в аэробных условиях (гетероцисты). Более подробная характеристика дифференцированных форм цианобактерий дана ниже при описании их систематики и процесса азотфиксации. Краткая характеристика акинет представлена в гл. 5. Для разных представителей этой группы характерна способность к скользящему движению. Оно свойственно как нитчатым формам (трихомы и/или гормогонии), так и одноклеточным (баеоциты).

Известны разные способы размножения цианобактерий. Деление клеток происходит путем равновеликого бинарного деления, сопровождающегося образованием поперечной перегородки или перетяжки; неравновеликого бинарного деления (почкования); множественного деления (см. рис. 20, А–Г). Бинарное деление может происходить только в одной плоскости, что у одноклеточных форм приводит к образованию цепочки клеток, а у нитчатых — к удлинению однорядного трихома. Деление в нескольких плоскостях ведет у одноклеточных цианобактерий к формированию скоплений правильной или неправильной формы, а у нитчатых — к возникновению многорядного трихома (если к такому делению способны почти все вегетативные клетки нити) или однорядного трихома с боковыми однорядными ветвями (если способность к делению в разных плоскостях обнаруживают только отдельные клетки нити). Размножение нитчатых форм осуществляется также с помощью обрывков трихома, состоящих из одной или нескольких клеток, у некоторых — также гормогониями, отличающимися по ряду признаков от трихомов, и в результате прорастания акинет в благоприятных условиях.

Начатая работа по классификации цианобактерий в соответствии с правилами Международного кодекса номенклатуры бактерий привела к выделению 5 основных таксономических групп в ранге порядков, различающихся морфологическими признаками (табл. 27). Для характеристики выделенных родов привлечены также данные, полученные при изучении клеточной ультраструктуры, генетического материала, физиолого-биохимических свойств.

К порядку Chroococcales отнесены одноклеточные цианобактерий, существующие в виде одиночных клеток или формирующие колонии (рис. 80). Для большинства представителей этой группы характерно образование чехлов, окружающих каждую клетку и, кроме того, удерживающих вместе группы клеток, т. е. участвующих в формировании колоний. Цианобактерий, клетки которых не образуют чехлов, легко распадаются до одиночных клеток. Размножение осуществляется бинарным делением в одной или нескольких плоскостях, а также почкованием.

Таблица 27. Основные таксономические группы цианобактерий

Одноклеточные формы: одиночные клетки или колонии 

Многоклеточные формы: нитчатые 

Пор. Chroococcales 

Пор. Pleurocapsales 

Пор. Oscillatoriales 

Пор. Nostocales 

Пор. Stigoneomatales 

Размножение бинарным делением в одной или более плоскостях или почкованием 

Размножение множественным делением или чередованием бинарного и множественного деления 

Трихомы неветвящиеся, состоят из одного ряда только вегетативных клеток. Рост трихома — делением клеток в одной плоскости 

В неветвящихся однорядных трихомах помимо вегетативных образуются дифференцированные клетки: гетероцисты и иногда акинеты. Рост трихома — делением клеток в одной плоскости 

Те же признаки, что и у представителей пор. Nostocales. Отличительный признак: способность вегетативных клеток трихома к делению более чем в одной плоскости, приводящему к появлению многорядных трихомов или трихомов с истинным ветвлением 

Рис. 80. Цианобактерии, отнесенные к порядку Chroococcales: 1 — Gloeobacter; 2 — Gloeothece; 3 — Gloeocapsa; 4 — Synechococcus; 5 — Synechocystis; 6 — Chamaesiphon. Прерывистой линией обозначены чехлы, точками — капсулы, черточками — тилакоиды  

В порядок Pleurocapsales выделены одноклеточные цианобактерий, способные к размножению путем множественного деления. Они существуют в виде одиночных клеток или скоплений, удерживаемых вместе с помощью внешнего (по отношению к наружной мембране) фибриллярного слоя клеточной стенки. Скопления могут состоять всего из нескольких клеток разной формы, иметь кубическую или неправильную форму. Входящие в эту группу цианобактерий различаются способностью размножаться только множественным делением или чередованием процессов бинарного и множественного деления (рис. 81). Освобождающиеся в результате множественного деления баеоциты могут быть подвижными или неподвижными. У подвижных баеоцитов при освобождении из материнской клетки отсутствует дополнительный фибриллярный слой клеточной стенки. Подвижность их теряется, когда этот слой синтезируется. У неподвижных форм к моменту выхода из материнской клетки дополнительный слой клеточной стенки уже сформирован.

<<< Назад Содержание Дальше >>>

medbookaide.ru